【3分で数学が好きになる!?】連立方程式:中央大学附属高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【3分で数学が好きになる!?】連立方程式:中央大学附属高等学校~全国入試問題解法

問題文全文(内容文):
入試問題 中央大学附属高等学校

連立方程式を求めなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{x+y}{xy } = 10 \\
\displaystyle \frac{1}{ x }- \displaystyle \frac{1}{ y }=6
\end{array}
\right.
\end{eqnarray}$
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)#中央大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 中央大学附属高等学校

連立方程式を求めなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{x+y}{xy } = 10 \\
\displaystyle \frac{1}{ x }- \displaystyle \frac{1}{ y }=6
\end{array}
\right.
\end{eqnarray}$
投稿日:2021.05.11

<関連動画>

【道具を使いこなせ!】連立方程式:東京都公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#東京都公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=1 \\
8x+9y=7
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け.

東京都公立高等学校過去問
この動画を見る 

中2数学「連立方程式(代入法)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~連立方程式(代入法)~

例題次の連立方程式を解きなさい

(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-2y=5 \\
y=2x-1
\end{array}
\right.
\end{eqnarray}$

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=2y-9 \\
-x+y=6
\end{array}
\right.
\end{eqnarray}$

(3)
$\begin{eqnarray}
\left\{
\begin{array}{l}
-4x+3y=14 \\
3y=-2x+2
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【エナドリ!】連立方程式:久留米大学附設高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#久留米大学附設高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 久留米大学附設高等学校

次の問いに答えよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{1}{2x-3y}+\displaystyle \frac{2}{x+2y}=3 \\
\displaystyle \frac{3}{2x-3y}+\displaystyle \frac{2}{x+2y}=5
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け。
この動画を見る 

【数学はパズルだ!】連立方程式:愛知県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 愛知県の高校

図の○の中に入る数
各辺の3つの和がすべて等しくなる。
ア、イにあてはまる数を求めなさい。
この動画を見る 

【ルーチン】連立方程式の解き方《後編》~【行列のできる】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
【ルーチン】連立方程式の解き方《後編》

$\begin{eqnarray}
\left\{
\begin{array}{l}
ax + by = l \\
cx + dy = m
\end{array}
\right.
\end{eqnarray}$

$ \iff $ $ \begin{pmatrix}
a & b \\
c & d
\end{pmatrix} $$\dbinom{ x }{ y }=\dbinom{ l }{ m }$
この動画を見る 
PAGE TOP