【数学】中高一貫校問題集 幾何:三平方の定理:平面図形 内接円の半径2 - 質問解決D.B.(データベース)

【数学】中高一貫校問題集 幾何:三平方の定理:平面図形 内接円の半径2

問題文全文(内容文):
3辺の長さがAB=7cm,BC=8cm,CA=9cmの△ABCがあり、円Oは△ABCに内接している。
(1)Aから辺BCに引いた垂線の長さを求めなさい。
(2)円Oの半径を求めなさい。
チャプター:

0:00 オープニング
0:05 問題文
0:24 (1)解説
2:36 (2)解説
3:21 別解、ヘロンの公式
4:54 エンディング

単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3辺の長さがAB=7cm,BC=8cm,CA=9cmの△ABCがあり、円Oは△ABCに内接している。
(1)Aから辺BCに引いた垂線の長さを求めなさい。
(2)円Oの半径を求めなさい。
投稿日:2024.06.28

<関連動画>

平方根の計算!!(2019立命館)

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#立命館高等学校
指導講師: 数学を数楽に
問題文全文(内容文):
以下を計算せよ
$\displaystyle \frac{\{(1+\sqrt{ 3 })^{50}\}^2(2-\sqrt{ 3 })^{50}}{2^{50}}$

出典:2019年立命館大学
この動画を見る 

factorization : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study

単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
以下の式を因数分解せよ。
\[
(x^2 -2x -3 )^2 + 13(x^2 -2x -3) - 90
\]
この動画を見る 

【数学】中3-37 二次関数の変域

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
変域をだすなら①____を書こう!

◎yの変域をもとめよう!(②~④) )のとき。
②$y=3x^2(1 \leqq x \leqq 3)$のとき。
③$y=3x^2(-2\leqq x \leqq 1)$のとき。
④$y=-\displaystyle \frac{1}{2}x^2(-1\leqq x \leqq4)$のとき。
⑤$y=ax^2$について、xの変域が$-3 \leqq x \leqq 1$のとき、
yの変域は$0 \leqq y \leqq 18$です。
aの値は?
この動画を見る 

【数学】中3-16 平方根②

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
整数を$\sqrt{ }$に変身させるなら
①____すればいい。
つまり・・・
5=②____,-7=③____
◎$\displaystyle \frac{5}{11},-\sqrt{ 3 },\sqrt{ 0.81 },\sqrt{ \displaystyle \frac{16}{25}},π$の中で・・・・
有理数は④____
無理数は⑤____
循環小数になるのは⑥____で、それを
循環小数で表すと⑦____となる。

◎小さいほうから順に並べよう!
⑧$-\sqrt{ 7 },3,\sqrt{ 6 },0,-2$
→⑧____→____→____→____→____
⑨$1.3,\sqrt{ 1.5 },1.4$
→⑨____→____→____
⑩$3 \lt \sqrt{ a } \lt 4.5$となる整数$a$は何個ある?
⑪$\sqrt{ a } \lt 2$となる自然数$a$をすべて書こう!
⑫$4 \lt \sqrt{ 2n } \lt 5$を満たす自然数$n$をすべて書こう!

この動画を見る 

分数式:埼玉工業~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#文字と式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 埼玉工業

次の恒等式が成り立つようにをうめよ。
$\displaystyle \frac{3}{x^3+1}=\displaystyle \frac{▭}{x+1}+\displaystyle \frac{▭}{x^2-x+1}$
この動画を見る 
PAGE TOP