【数Ⅱ】図形と方程式:円と方程式 円上の点Pにおける接線の方程式を求めよ。例題付き! - 質問解決D.B.(データベース)

【数Ⅱ】図形と方程式:円と方程式 円上の点Pにおける接線の方程式を求めよ。例題付き!

問題文全文(内容文):
円上の点における接線の方程式の求め方を解説!実際に(1)円$x^2+y^2=5$上の点P(1, 2)における接線の方程式、(2) 円$x^2+y^2= 36$上の点P(6, 0)における接線の方程式 も求めます。
チャプター:

0:00 オープニング
0:06 解説開始!まずは接線の方程式の求め方を確認!
4:37 例1)【円 x²+y²=5上の点P(1, 2)における接線の方程式】を求める!
6:49 例2)【円x²+y²= 36上の点P(6, 0)における接線の方程式】も求める!

単元: #数Ⅱ#図形と方程式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
円上の点における接線の方程式の求め方を解説!実際に(1)円$x^2+y^2=5$上の点P(1, 2)における接線の方程式、(2) 円$x^2+y^2= 36$上の点P(6, 0)における接線の方程式 も求めます。
投稿日:2023.03.12

<関連動画>

大学入試問題#823「置換するかどうか」 #筑波大学(2019) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (x+1)^2e-(x+1) dx$

出典:2019年筑波大学
この動画を見る 

福田の数学〜立教大学2021年理学部第1問(2)〜3直線が1点で交わる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0     
\end{array}
\right.
 (-2 \leqq t \leqq 1)
\end{eqnarray}$ 
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。

2021立教大学理学部過去問
この動画を見る 

【高校数学】 数Ⅱ-84 領域と最大・最小②

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①x,yが3つの不等式$x+2y-4\geqq0,3x+y-12\leqq0,x-3y+6\geqq0$を満たすとき、$4x+y$の最大値および最小値を求めよう。
この動画を見る 

07愛知県教員採用試験(数学:7番 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$ $\vert Z \vert=1,Z^5=1$
$Z\leftarrow \in $を求めよ.
この動画を見る 

【数Ⅱ】【三角関数】加法定理の応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
等式cos3α+sin3α=(cosα-sinα)(1+2sin2α)を証明せよ。
この動画を見る 
PAGE TOP