【改良版】立体の展開図のイメージ - 質問解決D.B.(データベース)

【改良版】立体の展開図のイメージ

問題文全文(内容文):
【改良版】立体の展開図のイメージ
※図は動画内参照
単元: #数学(中学生)#平面図形#立体図形#立体切断#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【改良版】立体の展開図のイメージ
※図は動画内参照
投稿日:2024.07.29

<関連動画>

【受験算数】直方体ABCD-EFGHをACFを通る平面とBDGを通る平面て切断した時にできるBを含む立体の体積を求めなさい

アイキャッチ画像
単元: #算数(中学受験)#立体図形#立体切断
教材: #予習シ#予習シ算数・小5下#中学受験教材#立方体・直方体の切断
指導講師: 理数個別チャンネル
問題文全文(内容文):
直方体ABCD-EFGHをACFを通る平面とBDGを通る平面て切断した時にできるBを含む立体の体積を求めなさい【予習シリーズ】【立体図形】
この動画を見る 

中学受験算数「立体図形の相似」小学4年生~6年生対象【毎日配信】

アイキャッチ画像
単元: #算数(中学受験)#立体図形#立体切断#体積・表面積・回転体・水量・変化のグラフ
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
第60回立体図形の相似

例1
次の図のような台形ABCDを、辺DCを軸として、 1回転させてできる立体の体積は何㎤ですか。

例2
次の図のような立方体を、P.Q.B.Dを通るように 切断したとき、点Cをふくむ立体の体積は何㎤ですか。
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第2問〜立方体の切断と位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立体図形#立体切断#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 一辺の長さが2である立方体OADB-CFGEを考える。
$\overrightarrow{OA}$=$\overrightarrow{a}$, $\overrightarrow{OB}$=$\overrightarrow{b}$, $\overrightarrow{OC}$=$\overrightarrow{c}$とおく。辺AFの中点をM、辺BDの中点をNとし、3点O,M,Nを通る平面$\pi$で立方体を切断する。
(1)平面$\pi$は辺AF,BD以外に辺$\boxed{\ \ あ\ \ }$とその両端以外で交わる。
(2)平面$\pi$と辺$\boxed{\ \ あ\ \ }$との交点をPとすると$\overrightarrow{OP}$=$\boxed{\ \ い\ \ } \overrightarrow{a}$+$\boxed{\ \ う\ \ } \overrightarrow{b}$+$\boxed{\ \ え\ \ } \overrightarrow{c}$
(3)断面の面積は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\sqrt{\boxed{\ \ ケ\ \ }}$である。
(4)切断されてできる立体のうち、頂点Aを含むものの体積は$\displaystyle\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。
(5)平面$\pi$と線分CDとの交点をQとする。
(i)点Qは線分CDを$\boxed{\ \ お\ \ }$に内分する。
(ii)$\overrightarrow{OQ}$=$\boxed{\ \ か\ \ } \overrightarrow{a}$+$\boxed{\ \ き\ \ } \overrightarrow{b}$+$\boxed{\ \ く\ \ } \overrightarrow{c}$である。

$\boxed{\ \ い\ \ }~\boxed{\ \ え\ \ }$, $\boxed{\ \ か\ \ }~\boxed{\ \ く\ \ }$の選択肢
(a)0 (b)1 (c)$\frac{1}{2}$ (d)$\frac{1}{3}$ (e)$\frac{2}{3}$ (f)$\frac{1}{4}$ (g)$\frac{3}{4}$ (h)$\frac{1}{5}$ 
(i)$\frac{2}{5}$ (j)$\frac{3}{5}$ (k)$\frac{4}{5}$ (l)$\frac{1}{6}$ (m)$\frac{5}{6}$

$\boxed{\ \ お\ \ }$の選択肢
(a)1:1 (b)2:1 (c)1:2 (d)3:1 (e)1:3 (f)4:1 (g)3:2 
(h)2:3 (i)1:4 (j)5:1 (k)1:5 
この動画を見る 

【高校受験対策】数学-死守23

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率#立体図形#立体切断#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-5-(-9)$を計算せよ.

②$- 2 ^ 2 \times 3$を計算せよ.

③$xy ^ 2 \times 6y \div 3xy$を計算せよ.

④$(x - 7)(x - 4) + 8x$を計算せよ.

⑤1次方程式$x + 4 = 5(2x - 1)$を解け.

⑥2次方程式$x ^ 2 + 3x - 18 = 0$を解け.

⑦$2\lt \sqrt a \lt \dfrac{10}{3}$をみたす正の整数のは何個あるか.

⑧図1で,2直線$\ell,m$は平行であり,
$\triangle ABC$は$AB = AC$の二等辺三角形である.
また,頂点$A,C$はそれぞれ $\ell m$上にある.
$\angle x$の大きさを求めよ.

⑨図2は,底面の半径が$3cm$,母線の長さが$ 9cm$の円すいである.
この円すいの体積を求めよ.ただし,円周率は$\pi$とする.

⑩図3は,女子生徒20人のハンドボール投げの記録をヒストグラムに表したもので,
平均値は12.2mであった.
このヒストグラムから読み取れることについて述べた次のア~エのうち,
正しいものをすべて選び,その記号を書け.

ア 中央値 (メジアン) は,平均値よりも小さい.
イ 最頻値(モード)は,平均値よりも大きい.
ウ 記録が12m未満の生徒は,全体の半数以上である.
工 記録が16m以上の生徒は,全体の20%である.

⑪図4で,数直線上を動く点$P$は,最初,原点$O$にある.
点$P$は,1枚の硬貨を1回投げるごとに,表が出れば正の方向に2だけ移動し,
裏が出れば負の方向に1だけ移動する.
硬貨を3回投げて移動した結果,点$P$が原点$O$にある確率を求めよ.

図は動画内参照
この動画を見る 

【SPX小6算数手元解説】多面体を切る③【D-支援解説】

アイキャッチ画像
単元: #算数(中学受験)#立体図形#立体切断#体積・表面積・回転体・水量・変化のグラフ#立体図形その他
教材: #SPX#6年算数W-支援#中学受験教材
指導講師: 受験算数の森
問題文全文(内容文):
次の(ア)~(カ)に当てはまる数を求めなさい。

図1の立体は、20個の同じ大きさの正三角形で囲まれていて、どの頂点のまわりにも5個の正三角形が集まってできています。この立体は正二十面体と呼ばれています。正二十面体の頂点の個数は(ア)個、辺の本数は(イ)本あります。
次に正二十面体の各頂点から出ている5本の辺を図2のように、その1/3の長さのところで切り落としていくと、図3のような立体ができます。この立体には正六角形の面は(ウ)面、正五角形の面は(エ)面ありますから、この立体の辺の本数は(オ)本です。また、この立体の頂点の個数は(カ)個です。
この動画を見る 
PAGE TOP