福田の数学〜中央大学2021年経済学部第1問(2)〜常用対数と桁数 - 質問解決D.B.(データベース)

福田の数学〜中央大学2021年経済学部第1問(2)〜常用対数と桁数

問題文全文(内容文):
$\boxed{1}$(1)$12^{25}$は何桁の整数か.
ただし,$\log_{10}2=0.3010,\log_{10}3=0.4771$とする.

2021中央大経済学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$(1)$12^{25}$は何桁の整数か.
ただし,$\log_{10}2=0.3010,\log_{10}3=0.4771$とする.

2021中央大経済学部過去問
投稿日:2021.08.17

<関連動画>

【高校数学】 数Ⅱ-134 対数とその性質④

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\log_23=a,\log_37=b$とするとき、$\log_{42}56$を$a,b$で表そう。

②$\log_{10}6=0.7782,\log_{10}12=1.0792$とするとき、$\log_{10}2,\log_{10}3$の値を求めよう。
この動画を見る 

【高校数学】 数Ⅱ-135 対数関数①・グラフ編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0.a≠1$とするとき、関数$y=\log_a x$を、$a$を①____とすると$x$の対数関数という。
ちなみに、$y=\log_a x$のグラフは、$y=a^x$のグラフと②____に関して対称。

◎次の関数のグラフを書こう。

③$y=\log_4 x$

④$y=\log_{\frac{1}{4}} x$
この動画を見る 

共テ数学90%取る勉強法

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$s$を正の実数として、$x,y$の連立方程式
$\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.$
を考える。以下では$\log_{10}2=0.301,$
$\log_{10}3=0.4771$として計算せよ。

$(\textrm{a})$この連立方程式の解が2組あるための必要十分条件は

$0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。

$(\textrm{b})\ s=2$のとき$x \lt y$となる解を$(x_0,\ y_0)$とする。
$y_0$を小数第3位で四捨五入した数の整数部分は$\boxed{\ \ ウ\ \ }$、
小数第1位は$\boxed{\ \ エ\ \ }$、小数第2位は$\boxed{\ \ オ\ \ }$である。

2021上智大学文系過去問
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第2問(1)〜指数対数不等式の表す領域の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#軌跡と領域#指数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
(1)次の連立不等式の表す領域の面積は$\dfrac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}$ である。
$\left\{\begin{array}{1}
\displaystyle\log_4y+\log_{\frac{1}{4}}(x-2)+\log_4\frac{1}{8-x} \geqq -1\\
2^{y+x^2+11} \leqq 1024^{x-1}\\
\end{array}\right.$

2021早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP