【数学】中3-16 平方根② - 質問解決D.B.(データベース)

【数学】中3-16 平方根②

問題文全文(内容文):
整数を$\sqrt{ }$に変身させるなら
①____すればいい。
つまり・・・
5=②____,-7=③____
◎$\displaystyle \frac{5}{11},-\sqrt{ 3 },\sqrt{ 0.81 },\sqrt{ \displaystyle \frac{16}{25}},π$の中で・・・・
有理数は④____
無理数は⑤____
循環小数になるのは⑥____で、それを
循環小数で表すと⑦____となる。

◎小さいほうから順に並べよう!
⑧$-\sqrt{ 7 },3,\sqrt{ 6 },0,-2$
→⑧____→____→____→____→____
⑨$1.3,\sqrt{ 1.5 },1.4$
→⑨____→____→____
⑩$3 \lt \sqrt{ a } \lt 4.5$となる整数$a$は何個ある?
⑪$\sqrt{ a } \lt 2$となる自然数$a$をすべて書こう!
⑫$4 \lt \sqrt{ 2n } \lt 5$を満たす自然数$n$をすべて書こう!

単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
整数を$\sqrt{ }$に変身させるなら
①____すればいい。
つまり・・・
5=②____,-7=③____
◎$\displaystyle \frac{5}{11},-\sqrt{ 3 },\sqrt{ 0.81 },\sqrt{ \displaystyle \frac{16}{25}},π$の中で・・・・
有理数は④____
無理数は⑤____
循環小数になるのは⑥____で、それを
循環小数で表すと⑦____となる。

◎小さいほうから順に並べよう!
⑧$-\sqrt{ 7 },3,\sqrt{ 6 },0,-2$
→⑧____→____→____→____→____
⑨$1.3,\sqrt{ 1.5 },1.4$
→⑨____→____→____
⑩$3 \lt \sqrt{ a } \lt 4.5$となる整数$a$は何個ある?
⑪$\sqrt{ a } \lt 2$となる自然数$a$をすべて書こう!
⑫$4 \lt \sqrt{ 2n } \lt 5$を満たす自然数$n$をすべて書こう!

投稿日:2013.05.25

<関連動画>

【高校受験対策/数学】死守71

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守71

①$8÷4+6$を計算せよ。

②$\frac{1}{2}+\frac{9}{10}×\frac{5}{3}$を計算せよ。

④$y$は$x$に反比例し、$x=2$のとき$y=-3$である。
このとき、$y$を$x$の式で表せ。

⑤次の比例式で、$x$の値を求めよ。
$x:(4x-1)=1:x$

⑥$\sqrt{7}$より大きく$\sqrt{31}$より小さい整数をすべて書け。

⑦3つの数$a$、$b$、$c$について、$ab \lt 0$、$abc \gt 0$のとき、$a$、$b$、$c$の符号の組み合わせとして、
最も適当なものを下のア~エの中から1つ選び、記号で答えよ。
※図は動画参照

⑧次のように、1から6までの数字がくり返し並んでいる。
左から100番目の数字は何か。
1、2、3、4、5、6、1、2、3、4、5、6、1、2・・・

⑨右の図のように、$AB=AC$である。
二等辺三角形$ABC$と、頂点$A$、$C$をそれぞれ通る2本の平行な直線$l$、$m$がある。
このときの$\angle x$大きさは何度か。

この動画を見る 

【自力で解きたい!】平方根:桐朋高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#桐朋高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ (2\sqrt3-3\sqrt2)(\sqrt2+\sqrt3)-2 \left(\dfrac{1}{\sqrt{24}}-\dfrac{1}{6}\right)$を計算せよ.

桐朋高校過去問
この動画を見る 

平方根の計算 洛星高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{285 \times 291 +9}$

洛星高等学校
この動画を見る 

高等学校入学試験予想問題:洛南高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る 

√ひとりぼっち大作戦!!  愛知高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt 3 +\sqrt 5 = x$のとき
$\sqrt 5$をxで表せ。(ただし根号は使用禁止)
この動画を見る 
PAGE TOP