【数学II】必殺!完璧攻略法!「小数第何位に初めて0でない数字が表れるか」 - 質問解決D.B.(データベース)

【数学II】必殺!完璧攻略法!「小数第何位に初めて0でない数字が表れるか」

問題文全文(内容文):
$\displaystyle \frac{1}{2}^{10}$は小数第何位に初めて0でない数字が表れるか。
$log_{ 10 }2=0.3010$とする。
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$\displaystyle \frac{1}{2}^{10}$は小数第何位に初めて0でない数字が表れるか。
$log_{ 10 }2=0.3010$とする。
投稿日:2019.06.07

<関連動画>

結局0の0乗っていくつになるの?

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
0の0乗は何になるか
この動画を見る 

【誘導あり:概要欄】大学入試問題#256 神戸大学2012 #極限 #はさみうちの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$2 \leqq n$自然数
$S_n=\displaystyle \sum_{k=1}^{n^3-1}\displaystyle \frac{1}{k\ log\ k}$

(1)
$2 \leqq k$:自然数
$\displaystyle \frac{1}{(k+1)log(k+1)} \lt \displaystyle \int_{k}^{k+1}\displaystyle \frac{dx}{x\ log\ x} \lt \displaystyle \frac{1}{k\ log\ k}$

(2)
$\displaystyle \lim_{ n \to \infty }S_n$を求めよ。

出典:2012年神戸大学 入試問題
この動画を見る 

どっちがでかい?かなりの大差じゃね?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{100!}$ vs $2^{100}!$
どちらが大きい??

この動画を見る 

見掛け倒しの対数方程式

アイキャッチ画像
単元: #対数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\log_{4}x)^{\log_{2}x}$=X
xが1より大きいことを解け

東北学院大過去問
この動画を見る 

【高校数学】数Ⅲ-99 対数関数の導関数②

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。

①$y=(\log x)^2$

②$y=\dfrac{\log x}{x}$

③$y=\log(x+\sqrt{x^2+3})$

④$y=\log \dfrac{1+\sin x}{1- \sin x}$
この動画を見る 
PAGE TOP