福田の数学〜慶應義塾大学2024年医学部第2問〜確率漸化式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年医学部第2問〜確率漸化式

問題文全文(内容文):
$\Large\boxed{2}$ 袋が2つ(袋1と袋2)および赤玉2個、白玉4個が用意されている。それぞれの袋に玉が3個ずつ入った状態として、次の3つがあり得る。
状態A:袋1に入っている赤玉が0個である状態
状態B:袋1に入っている赤玉が1個である状態
状態C:袋1に入っている赤玉が2個である状態
上記の各状態に対して、次の2段階からなる操作Tを考える。
操作T:袋1から玉を1個無作為に取り出し、それを袋2に入れる。次に、袋2から玉を1個無作為に取り出し、それを袋1に入れる。
(1)X,YをそれぞれA,B,Cのいずれかとする。状態Xに対し操作Tを1回施した結果、状態Yになる確率をP(X→Y)で表す。このとき、
P(A→A)=$\boxed{\ \ (あ)\ \ }$, P(A→B)=$\boxed{\ \ (い)\ \ }$, P(B→A)=$\boxed{\ \ (う)\ \ }$,
P(B→B)=$\boxed{\ \ (え)\ \ }$, P(C→A)=$\boxed{\ \ (お)\ \ }$, P(C→B)=$\boxed{\ \ (か)\ \ }$ である。
(2)以下、$n$を自然数とし、状態Bから始めて操作Tを繰り返し施す。操作Tを$n$回施し終えたとき、状態Aである確率を$a_n$、状態Bである確率を$b_n$、状態Cである確率を$c_n$とする。$n$≧2 とするとき、$a_n$,$b_n$,$c_n$と$a_{n-1}$,$b_{n-1}$,$c_{n-1}$の間には次の関係式が成り立つ。
$\left\{\begin{array}{1}
a_n=\boxed{\ \ (あ)\ \ }a_{n-1}+\boxed{\ \ (う)\ \ }b_{n-1}+\boxed{\ \ (お)\ \ }c_{n-1}\\
b_n=\boxed{\ \ (い)\ \ }a_{n-1}+\boxed{\ \ (え)\ \ }b_{n-1}+\boxed{\ \ (か)\ \ }c_{n-1}\\
\end{array}\right.$
したがって$b_n$と$b_{n-1}$の間には次の関係式が成り立つことが分かる。
$b_n$=$\boxed{\ \ (き)\ \ }b_{n-1}$+$\boxed{\ \ (く)\ \ }$
これより、$n$≧1 に対して$b_n$を$n$の式で表すと
$b_n$=$\boxed{\ \ (け)\ \ }$+$\boxed{\ \ (こ)\ \ }(\boxed{\ \ (さ)\ \ })^n$
となる。さらに$d_n$=$\displaystyle\frac{a_n}{(\boxed{\ \ (あ)\ \ })^n}$とおくとき、$d_n$を$n$の式で表すと
$d_n$=$\boxed{\ \ (し)\ \ }\left\{(\boxed{\ \ (す)\ \ })^n-(\boxed{\ \ (せ)\ \ })^n\right\}$
となる。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 袋が2つ(袋1と袋2)および赤玉2個、白玉4個が用意されている。それぞれの袋に玉が3個ずつ入った状態として、次の3つがあり得る。
状態A:袋1に入っている赤玉が0個である状態
状態B:袋1に入っている赤玉が1個である状態
状態C:袋1に入っている赤玉が2個である状態
上記の各状態に対して、次の2段階からなる操作Tを考える。
操作T:袋1から玉を1個無作為に取り出し、それを袋2に入れる。次に、袋2から玉を1個無作為に取り出し、それを袋1に入れる。
(1)X,YをそれぞれA,B,Cのいずれかとする。状態Xに対し操作Tを1回施した結果、状態Yになる確率をP(X→Y)で表す。このとき、
P(A→A)=$\boxed{\ \ (あ)\ \ }$, P(A→B)=$\boxed{\ \ (い)\ \ }$, P(B→A)=$\boxed{\ \ (う)\ \ }$,
P(B→B)=$\boxed{\ \ (え)\ \ }$, P(C→A)=$\boxed{\ \ (お)\ \ }$, P(C→B)=$\boxed{\ \ (か)\ \ }$ である。
(2)以下、$n$を自然数とし、状態Bから始めて操作Tを繰り返し施す。操作Tを$n$回施し終えたとき、状態Aである確率を$a_n$、状態Bである確率を$b_n$、状態Cである確率を$c_n$とする。$n$≧2 とするとき、$a_n$,$b_n$,$c_n$と$a_{n-1}$,$b_{n-1}$,$c_{n-1}$の間には次の関係式が成り立つ。
$\left\{\begin{array}{1}
a_n=\boxed{\ \ (あ)\ \ }a_{n-1}+\boxed{\ \ (う)\ \ }b_{n-1}+\boxed{\ \ (お)\ \ }c_{n-1}\\
b_n=\boxed{\ \ (い)\ \ }a_{n-1}+\boxed{\ \ (え)\ \ }b_{n-1}+\boxed{\ \ (か)\ \ }c_{n-1}\\
\end{array}\right.$
したがって$b_n$と$b_{n-1}$の間には次の関係式が成り立つことが分かる。
$b_n$=$\boxed{\ \ (き)\ \ }b_{n-1}$+$\boxed{\ \ (く)\ \ }$
これより、$n$≧1 に対して$b_n$を$n$の式で表すと
$b_n$=$\boxed{\ \ (け)\ \ }$+$\boxed{\ \ (こ)\ \ }(\boxed{\ \ (さ)\ \ })^n$
となる。さらに$d_n$=$\displaystyle\frac{a_n}{(\boxed{\ \ (あ)\ \ })^n}$とおくとき、$d_n$を$n$の式で表すと
$d_n$=$\boxed{\ \ (し)\ \ }\left\{(\boxed{\ \ (す)\ \ })^n-(\boxed{\ \ (せ)\ \ })^n\right\}$
となる。
投稿日:2024.06.24

<関連動画>

福田の入試問題解説〜北海道大学2022年理系第1問〜絶対値の付いた2次関数の最小値(難)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$0 \leqq a \leqq b \leqq 1$を満たすa,bに対し、関数
$f(x)=|x(x-1)|+|(x-a)(x-b)|$
を考える。xが実数の範囲を動くとき、$f(x)$は最小値mをもつとする。
(1)$x \lt 0$および$x \gt 1$では$f(x) \gt m$となることを示せ。
(2)$m=f(0)$または$m=f(1)$であることを示せ。
(3)$a,b$が$0 \leqq a \leqq b \leqq 1$を満たして動くとき、mの最大値を求めよ。

2022北海道大学理系過去問
この動画を見る 

2023京都大学 整式の剰余

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2023}-1$を$x^4+x^3+x^2+x+1$で割ったあまりを求めよ.

2023京都大過去問
この動画を見る 

頻出!微分のよく見るような問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
曲線y=-1/2(x²+1)上の点Pにおける接線はx軸と交わるとし,その交点をQとおく。線分PQの長さをLとするとき, Lが取りうる値の最小値を求めよ。

京都大過去問
この動画を見る 

3つの整数の最大公約数!解けますか?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を自然数とする。3つの整数$n^2+2,n^4+2,n^6+2$の最大公約数$A_n$を求めよ。

京都大過去問
この動画を見る 

新潟大 微分・積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人新潟大学
$C:$$f(x)=2x^3-12x$
$(1,-2)$を通る接線$C$の接線を$l$

$(1)l$の方程式
$(2)C$と$l$で囲まれる面積
この動画を見る 
PAGE TOP