横浜市立(医)漸化式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

横浜市立(医)漸化式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2016横浜市立大学過去問題
$a_1=1 , a_2 = 1$
$a_{n+2}-5a_{n+1}+6a_n-6n = 0$
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2016横浜市立大学過去問題
$a_1=1 , a_2 = 1$
$a_{n+2}-5a_{n+1}+6a_n-6n = 0$
投稿日:2018.04.24

<関連動画>

佐賀大 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
佐賀大学過去問題
n自然数
(1)$n! \geqq 2^{n-1}$
(2)$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} < 3$
 証明せよ
この動画を見る 

これ説明できる?

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
一筆書きできる確率、一筆書きできない確率
この動画を見る 

福田の1.5倍速演習〜合格する重要問題076〜東京大学2018年度理系第2問〜数列の項の大小とユークリッドの互除法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
第2問
数列$a_1$, $a_2$, $\cdots$を
$a_n$=$\displaystyle\frac{{}_{2n+1}C_n}{n!}$ ($n$=1,2,...)
で定める。
(1)n≧2とする。$\frac{a_n}{a_{n-1}}$を既約分数$\frac{q_n}{p_n}$として表したときの分母$p_n$≧1と分子$q_n$を求めよ。
(2)$a_n$が整数となるn≧1をすべて求めよ。

2018東京大学理系過去問
この動画を見る 

埼玉大(経済)典型的な連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n$の一般項
$a_1=b_1=1$
$a_{n+1}=a_n+4b_n$
$b_{n+1}=a_n+b_n$を求めよ.

埼玉大過去問
この動画を見る 

順天堂大(医)漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=(\sqrt2+1)^{2n-1}-(\sqrt2-1)^{2n-1}$
$a_{n+4}-a_n$が6の倍数であることを示せ.

順天堂(医)過去問
この動画を見る 
PAGE TOP