数学「大学入試良問集」【5−2 確率と円順列】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【5−2 確率と円順列】を宇宙一わかりやすく

問題文全文(内容文):
nを2以上とし、n組の夫婦が、2n人掛の円卓に着席するものとする。
着席位置を無作為に決めるとき、次の問いに答えよ。
(1)男女が交互に着席する確率を求めよ。
(2)どの夫婦も隣り合わせに着席する確率を求めよ。
(3)男女が交互になり、かつ、どの夫婦も隣り合わせに着席する確率を求めよ。
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学#大阪市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
nを2以上とし、n組の夫婦が、2n人掛の円卓に着席するものとする。
着席位置を無作為に決めるとき、次の問いに答えよ。
(1)男女が交互に着席する確率を求めよ。
(2)どの夫婦も隣り合わせに着席する確率を求めよ。
(3)男女が交互になり、かつ、どの夫婦も隣り合わせに着席する確率を求めよ。
投稿日:2021.04.04

<関連動画>

京都大学 サイコロ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロをn回振って(n2)出た目の(最大値)(最小値)=xとする
(1)
x=1となる確率

(2)
x=5となる確率

出典:2017年京都大学 過去問
この動画を見る 

福田の数学〜中央大学2021年経済学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
21辺の長さが1の正方形の頂点を時計回りにA,B,C,Dとする。点PはAから
出発し、硬貨を投げるたびに正方形の周上を時計回りに動く。1枚の硬貨を投げて
表が出たときにはPは2だけ進み、裏が出たときにはPは1だけ進む。硬貨を投げた
ときに、表と裏の出る確率は等しいとする。このとき以下の問いに答えよ。

(1)硬貨を5回続けて投げたとき、PがAにいる確率を求めよ。
(2)硬貨を10回続けて投げたとき、PがDにいる確率を求めよ。

2021中央大学経済学部過去問
この動画を見る 

山梨大 順列の証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019年 山梨大学 過去問

赤玉p個,青玉q個,白玉r
合計n個を1列に並べてできる順列の総数が
n!p!f!r!であることを証明せよ。
この動画を見る 

【高校数学】  数A-7  順列① ・ 基本編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
6P3=
3P3=
7P2=
9P1=
5!=
6P0=

⑦5個の文字a,b,c,d,eから異なる3個を選んで1列に並べるときの並べ方は何通り?

⑧30人の部員の中から、兼任を認めないで、部長・副部長を各1人選ぶとき、選び方は何通り?

⑨異なる7個の玉を机の上で円形に並べるとき、並べ方は何通り?
この動画を見る 

【高校数学】集合の基礎例題2題~苦手な人は一緒に解こう~ 1-3.5【数学A】

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から12までの自然数全体の集合を全体集合とし、2の倍数全体の集合をA、
3の倍数全体の集合をBとする。

このとき、次の集合を求めよ。
U={1,2,3,4,5,6,7,8,9,10,11,12}, A={2,4,6,8,10,12}, B={3,6,9,12}

(1)AB={6,12}

(2)AB={2,3,4,6,8,9,10,12}

(3)A={1,3,5,7,9,11}

(4)B={1,2,4,5,7,8,10,11}

(5)AB={1,5,7,11}

(6)AB={3,9}

(7)AB={1,2,4,5,6,7,8,10,11,12}

(8)AB={1,5,7,11}

-----------------

全体集合U={1,2,3,4,5,6,7,8,9}の部分集合A,Bについて、
AB={1,4,8}, AB={6,9}, AB={2,5,7}のとき、次の集合を求めよ。

(1)AB={2,3,5,6,7,9}

(2)A={2,3,5,7}

(3)B={3,6,9}
この動画を見る 
PAGE TOP preload imagepreload image