大学入試問題#846「基本問題」 #岩手大学(2017) #極限 - 質問解決D.B.(データベース)

大学入試問題#846「基本問題」 #岩手大学(2017) #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=e$を利用して
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\tan x-\sin x}{x^4}\{log(x^2+x^3)-log\ x^2\}$を求めよ

出典:2017年岩手大学 入試問題
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=e$を利用して
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\tan x-\sin x}{x^4}\{log(x^2+x^3)-log\ x^2\}$を求めよ

出典:2017年岩手大学 入試問題
投稿日:2024.06.11

<関連動画>

大学入試問題#457「いかにしてサッパリ解くか!」 横浜国立大学(2001) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{dx}{x\sqrt{ 1+x^3 }}$

出典:2001年横浜国立大学 入試問題
この動画を見る 

福田のおもしろ数学441〜ガウス記号を使って定義された数列の極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$a_n=\dfrac{1}{n^2} \displaystyle \sum_{k=1}^n [\sqrt{2n^2-k^2}]$とするとき、

$\displaystyle \lim_{n\to\infty} a_n$を求めて下さい。

$[x]$は$x$を超えない最大の整数とする。
   
この動画を見る 

東大(文)三次方程式と合成関数 実数解の個数 高校数学 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
2004東京大学過去問題
$f(x)=x^3-3x$
$g(x)= \{ f(x) \}^3-3f(x)$
$h(x)= \{ g(x) \}^3-3g(x)$
(1)f(x)=a (実数)を満たす実数xの個数
(2)g(x)=0を満たす実数xの個数
(3)h(x)=0を満たす実数xの個数
この動画を見る 

大学入試問題#152 東京工業大学(2002) 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{log\ n}(1+\displaystyle \frac{1}{2}+・・・+\displaystyle \frac{1}{n})$を求めよ。

出典:2002年東京工業大学 入試問題
この動画を見る 

福田の数学〜東北大学2025理系第3問〜4次関数が極大値をもつ条件

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$a$を実数とし、関数$f(x)$を次のように定める。

$f(x)=x^4+\dfrac{4a}{3}x^3+(a+2)x^2$

このとき、以下の問いに答えよ。

(1)関数$f(x)$が極大値をもつような$a$のとり得る

値の範囲を求めよ。

(2)関数$f(x)$が$x=0$で極大値をもつような

$a$のとり得る値の範囲を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 
PAGE TOP