【高校数学】組合せの例題~すこし難しいのも解こうぜ~ 1-10.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】組合せの例題~すこし難しいのも解こうぜ~ 1-10.5【数学A】

問題文全文(内容文):
1⃣
正十角形ABCDEFGHIJの3つの頂点を結んで三角形をつくる。
(ア)できる三角形の総数を求めよ。
(イ)正十角形と1辺だけを共有する三角形は何個あるか。
(ウ)正十角形と辺を共有しない三角形は何個あるか。


2⃣
男子8人,女子6人の中から4人の委員を選ぶとき、次のような選び方は何通りあるか。
(1)すべての選び方
(2)男子2人,女子2人を選ぶ
(3)女子から少なくとも1人選ぶ
(4)男子、女子から少なくとも1人ずつ選ぶ
(5)特定の2人、A・Bがともに選ばれる
(6)Aは選ばれ、Bは選ばれない
チャプター:

00:00 はじまり

00:23 問題提起

00:49 1問目の解説

06:41 2問目の解説

11:22 授業の見方

11:54 まとめ

12:21 問題と答え

単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
正十角形ABCDEFGHIJの3つの頂点を結んで三角形をつくる。
(ア)できる三角形の総数を求めよ。
(イ)正十角形と1辺だけを共有する三角形は何個あるか。
(ウ)正十角形と辺を共有しない三角形は何個あるか。


2⃣
男子8人,女子6人の中から4人の委員を選ぶとき、次のような選び方は何通りあるか。
(1)すべての選び方
(2)男子2人,女子2人を選ぶ
(3)女子から少なくとも1人選ぶ
(4)男子、女子から少なくとも1人ずつ選ぶ
(5)特定の2人、A・Bがともに選ばれる
(6)Aは選ばれ、Bは選ばれない
投稿日:2020.06.22

<関連動画>

法政大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#法政大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023法政大過去問

サイコロを3つ同時に投げる。出た目の積が300の倍数となる確率を求めよ.
この動画を見る 

【数学A】確率『反復試行の確率』

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1枚のコインを6回投げるとき、次の確率を求めよ。
(1)表が4回出る確率
(2)表が5回以上出る確率
(3)表の出る回数が3回以下である確率
この動画を見る 

【高校数学】 数B-104 期待値②

アイキャッチ画像
単元: #数A#場合の数と確率#確率#確率分布と統計的な推測#確率分布#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①1個のさいころを投げ,「出た目の数×500円」を受け取るゲームをする.
1回さいころを投げるのに2000円かかるとき,
このゲームに参加するのは得か,損か.

②1個のさいころを5回投げて,「3の倍数の目が出る回数×100円」を受け取るゲームをする.
参加料が200円のとき,このゲームに参加することは得か,損か.
この動画を見る 

【数A】条件付き確率の考え方

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1/3 の確率で肝心なものを忘れるAOIさん 坂田アキラの「確率」が面白いほどとける本
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第6問〜新型ウィルス感染拡大による休業要請と補償金の期待値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$新型ウイルスの感染拡大にともなって、ある国の自治体がある飲食店に1ヵ月間
の休業要請を行い、もし飲食店が要請に応じた場合、自治体は飲食店に補償金を
払うことになったものとする。いま、この飲食店は補償金が90万円以上であれば
要請に応じ、90万円未満なら要請に応じないものとする。補償金の額をC万円で
したとき、(C-90)万円を飲食店の超過利益と呼ぶことにする。もし$C \lt 90$
であれば、飲食店は要請に応じず、超過利益は0万円とする。
また、この自治体は支払うことのできる補償金の上限が定まっていて、それがD万円
$(D \geqq C)$であったとき、飲食店がC万円で要請に応じた場合、(D-C)万円は
補償金の節約分となる。ただし、飲食店が要請に応じなかった場合には、補償金の
節約分は0万円とする。
(1)まず、自治体が飲食店に休業要請する場合の補償金の額C万円を提示する場合
について考える。いま、自治体の補償金の上限が125万円であったとき、自治体
の補償金の節約分が最も大きくなるのは$C=\boxed{\ \ アイウ\ \ }$万円の場合である。
(2)次に、飲食店が自治体に休業要請し、自治体が申請を受理した場合に、飲食店
は休業と引き替えに補償金を受け取ることができる場合について考える。なお、
飲食店は休業申請をする際に90万円以上の補償金の額を自治体に提示するもの
とする。また、ここでは自治体が支払うことができる補償金の上限については、
125万円か150万円か175万円のどれかに定まっているが公表されておらず、
飲食店は125万円である確率が\frac{2}{5}、150万円である確率が\frac{1}{5}、175万円である
確率が\frac{2}{5}であると予想しているものとする。
ただし、飲食店が提示した補償金の額が、実際に自治体が支払うことができる上限
を超えていた場合、自治体は申請を受理せず、そのときの補償金の節約分は0万円
になり、申請が受理されなければ、飲食店は休業せず、超過利益は0万円になる。
たとえば、飲食店が休業申請をする際にC=160万円を提示した場合、飲食店
の超過利益(の期待値)は$\boxed{\ \ エオカ\ \ }$万円となる。
そこで、飲食店が超過利益(の期待値)を最も大きくする補償金の額を休業申請
の際に自治体に提示したとすると
$(\textrm{a})$飲食店の超過利益(の期待値)は$\boxed{\ \ キクケ\ \ }$万円であり、
$(\textrm{b})$自治体の補償金の上限が実際は125万円であった場合、補償金の節約分は
$\boxed{\ \ コサシ\ \ }$万円。
$(\textrm{c})$自治体の補償金の上限が実際は175万円であった場合、補償金の節約分は
$\boxed{\ \ スセソ\ \ }$万円。

2022慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP