【高校数学】組合せの例題~すこし難しいのも解こうぜ~ 1-10.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】組合せの例題~すこし難しいのも解こうぜ~ 1-10.5【数学A】

問題文全文(内容文):
1⃣
正十角形ABCDEFGHIJの3つの頂点を結んで三角形をつくる。
(ア)できる三角形の総数を求めよ。
(イ)正十角形と1辺だけを共有する三角形は何個あるか。
(ウ)正十角形と辺を共有しない三角形は何個あるか。


2⃣
男子8人,女子6人の中から4人の委員を選ぶとき、次のような選び方は何通りあるか。
(1)すべての選び方
(2)男子2人,女子2人を選ぶ
(3)女子から少なくとも1人選ぶ
(4)男子、女子から少なくとも1人ずつ選ぶ
(5)特定の2人、A・Bがともに選ばれる
(6)Aは選ばれ、Bは選ばれない
チャプター:

00:00 はじまり

00:23 問題提起

00:49 1問目の解説

06:41 2問目の解説

11:22 授業の見方

11:54 まとめ

12:21 問題と答え

単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
正十角形ABCDEFGHIJの3つの頂点を結んで三角形をつくる。
(ア)できる三角形の総数を求めよ。
(イ)正十角形と1辺だけを共有する三角形は何個あるか。
(ウ)正十角形と辺を共有しない三角形は何個あるか。


2⃣
男子8人,女子6人の中から4人の委員を選ぶとき、次のような選び方は何通りあるか。
(1)すべての選び方
(2)男子2人,女子2人を選ぶ
(3)女子から少なくとも1人選ぶ
(4)男子、女子から少なくとも1人ずつ選ぶ
(5)特定の2人、A・Bがともに選ばれる
(6)Aは選ばれ、Bは選ばれない
投稿日:2020.06.22

<関連動画>

確率の基本問題 成蹊大

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023成蹊大学過去問題
5人で1回だけジャンケン、次の確率を求めよ.
①1人だけ勝つ確率
②2人だけ勝つ確率
③あいこの確率
この動画を見る 

福田の一夜漬け数学〜順列・組合せ(7)〜組み分け(応用編)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 6個の玉を3個の箱に入れる。次の時の分け方は何通りか。
(1)空箱を許し、玉に区別なし、箱に区別なし。
(2)空箱を許さず、玉に区別なし、箱に区別なし。
この動画を見る 

福田の数学〜九州大学2023年文系第4問PART1〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 

北海道大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1つのサイコロを投げ続けて、2回連続して同じ目が出たら終了。

(1)
4回以内(4回を含む)に終わる確率は?

(2)
$r$回以内に終わる確率は?
$(r \geqq 2)$

出典:2006年北海道大学 過去問
この動画を見る 

場合の数 集合の個数~ベン図も使えます~【さこすけ's サイエンスがていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
全体集合Uと,その部分集合A,Bに対して$n(U)=50,n(A∪B)=42,n(A∩B)=3,
n$($A$の補集合$∩B)=15$であるとき、次の集合の要素の個数を求めよ。
(1)$A$の補集合$∩B$の補集合        (2)$A∩B$の補集合      (3)$A$

500以上1000以下の整数のうち,次のような数は何個あるか。
(1)11の倍数でない整数  (2)11の倍数であるが3の倍数でない整数

60人の生徒に数学と英語の試験を行った。数学の合格者は50人,
英語の合格者は30人,2教科ともに不合格であった者は8人であった。
(1)2教科とも合格した者は何人か。(2)数学だけ合格した者は何人か。
この動画を見る 
PAGE TOP