【高校数学】確率の例題~少し難しいやつ~ 2-1.5 【数学A】 - 質問解決D.B.(データベース)

【高校数学】確率の例題~少し難しいやつ~ 2-1.5 【数学A】

問題文全文(内容文):
1⃣
5人がじゃんけんを1回するとき、次の確率を求めよ。
(a) 1人だけが勝つ確率
(b) 3人が勝つ確率
(c) あいこになる確率

-----------------

2⃣
赤玉と白玉が合わせて8個入った袋がある。
この袋の中から玉を2個同時に取り出すとき、赤玉の出ない確率が$\displaystyle \frac{5}{14}$こであるという。
袋の中には白玉は何個入っているか。
チャプター:

00:00 はじまり

00:34 問題だよ

00:45 問題解説(1)

07:45 問題解説(2)

12:02 まとめ

12:19 問題と答え

単元: #数A#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
5人がじゃんけんを1回するとき、次の確率を求めよ。
(a) 1人だけが勝つ確率
(b) 3人が勝つ確率
(c) あいこになる確率

-----------------

2⃣
赤玉と白玉が合わせて8個入った袋がある。
この袋の中から玉を2個同時に取り出すとき、赤玉の出ない確率が$\displaystyle \frac{5}{14}$こであるという。
袋の中には白玉は何個入っているか。
投稿日:2020.07.12

<関連動画>

分母が文字入っている方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$\frac{1}{x} - \frac{1}{3x} = \frac{2}{3}$
この動画を見る 

慶應(医)ピタゴラス数 効果的勉強法 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題'68
$a^2+b^2+c^2$を満足する3つの正の整数a,b,cをピタゴラス数という。
a,b,cがピタゴラス数であるとき
(1)$\frac{b+c}{a}=t$とおいて、a:b:cをtの整式の比として表せ。
(2)$100 \geqq a+b+c \geqq 50$の例を2つあげよ(a,b,c互いに素)
この動画を見る 

倍数の性質の利用 2021 新宿 B

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
次の条件を満たす4ケタの自然数A=?
・Aの千の位と一の位を入れ替えた数をB
・Aの十の位と一の位を入れ替えた数をC
・Aの千の位と百の位を入れ替えた数をD
・Aは3の倍数
・Aは1の位が素数
・Bは5の倍数
・Cは10の倍数
・D-A=3600

2021都立新宿高等学校
この動画を見る 

福田の数学〜東京医科歯科大学2024医学部第1問〜n変数の不定方程式の解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$n$を$2$以上の自然数とする。自然数の組$(a_1,a_2,\cdots,a_n)$を解とする方程式
$(*)~a_1+a_2+\cdots+a_n=a_1 \times a_2 \times \cdots \times a_n$を考える。
(1) $n=3$のとき、$(*)$の解$(a_1,a_2,a_3)$のうち、$a_1\leqq a_2 \leqq a_3$を満たすものをすべて求めよ。
(2) $n\geqq 3$のとき、$(*)$の任意の解$(a_1,a_2,\cdots,a_n)$において、$a_i=1$となる$i$が少なくとも1つ存在することを示せ。
(3) $(*)$のある解$(a_1,a_2,\cdots,a_n)$において、$a_i=1$となる$i$がちょうど2個存在しているとする。このとき、$n$のとりうる値を全て求めよ。
この動画を見る 

【数A】図形の性質:<これを見て思い出そう>三角形の重心の性質 ~何対何?~

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形の重心における、頂点→重心:重心→中点の線分の比を導出する動画になります。
この動画を見る 
PAGE TOP