福田の数学〜名古屋大学2025理系第2問〜不定方程式の整数解 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2025理系第2問〜不定方程式の整数解

問題文全文(内容文):

$\boxed{2}$

整数$a,b,c$に対し次の条件を考える。

(*)$ a\geqq b \geqq 0$かつ$a^2-b^2=c$

以下の問いに答えよ。

(1)$c=24,25,26$それぞれの場合に

条件(*)をみたす

整数の組$(a,b)$をすべて求めよ。

(2)$p$は$3$以上の素数、$n$は正の整数、

$c=4p^{2n}$とする。

このとき、条件(*)をみたす整数の組$(a,b)$を

すべて求めよ。

$2025$年名古屋大学理系過去問題
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

整数$a,b,c$に対し次の条件を考える。

(*)$ a\geqq b \geqq 0$かつ$a^2-b^2=c$

以下の問いに答えよ。

(1)$c=24,25,26$それぞれの場合に

条件(*)をみたす

整数の組$(a,b)$をすべて求めよ。

(2)$p$は$3$以上の素数、$n$は正の整数、

$c=4p^{2n}$とする。

このとき、条件(*)をみたす整数の組$(a,b)$を

すべて求めよ。

$2025$年名古屋大学理系過去問題
投稿日:2025.05.15

<関連動画>

東大の整数問題!かなり良問です【数学 入試問題】【東京大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を1以上の整数とする。

(1)$n^2+1$と$5n^2+9$の最大公約数$d_n$を求めよ。
(2)$(n^2+1)(5n^2+9)$は整数の2乗にならないことを示せ。

東大過去問
この動画を見る 

kとk+1ということは・・・【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nとkを自然数とし、整数$x^{n}$を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ

京都大過去問
この動画を見る 

正方形の中にある直角三角形の面積

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△DEF=?
*図は動画内参照
この動画を見る 

福田の数学〜名古屋大学2022年理系第1問〜割り算の余りと異なる実数解の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。                        
(1)整式$x^3$を2次式$(x-a)^2$で割った時の余りを求めよ。
(2)実数を係数とする2次式$f(x)=x^2+\alpha x+\beta$で整式$x^3$を割った時の余りが
$3x+b$とする。bの値に応じて、このようなf(x)が何個あるかを求めよ。

2022名古屋大学理系過去問
この動画を見る 

三角定規、比の扱い 明治学院

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
明治学院高等学校
この動画を見る 
PAGE TOP