大学入試問題#715「このタイプ苦手」 早稲田理工系学部(2021) 整式 - 質問解決D.B.(データベース)

大学入試問題#715「このタイプ苦手」 早稲田理工系学部(2021) 整式

問題文全文(内容文):
$f(x)=x^4-x^2+1$
1.$x^6$を$f(x)$で割ったときの余りを求めよ
2.$x^{2021}$を$f(x)$で割ったときの余りを求めよ
3.自然数$n$が3の倍数の時、$(x^2-1)^n-1$が$f(x)$で割り切れることを示せ

出典:2021年早稲田大学理工学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=x^4-x^2+1$
1.$x^6$を$f(x)$で割ったときの余りを求めよ
2.$x^{2021}$を$f(x)$で割ったときの余りを求めよ
3.自然数$n$が3の倍数の時、$(x^2-1)^n-1$が$f(x)$で割り切れることを示せ

出典:2021年早稲田大学理工学部 入試問題
投稿日:2024.01.25

<関連動画>

素数であることの証明【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を2以上の整数とする。$3^n-2^n$が素数ならば$n$も素数であることを示せ。

京都大過去問
この動画を見る 

数学「大学入試良問集」【3−4 整数 n進法】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
7進法で表すと3けたとなる正の整数がある。
これを11進法で表すと、やはり3けたで、数字の順序がもととちょうど反対となる。
このような整数を10進法で表せ。
この動画を見る 

秋田大(理)超基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x\leqq 2において,y=2^{2n+2}-2^{x+2}$の最大値と最小値を求めよ.

秋田大(理)過去問
この動画を見る 

一橋大 整数問題 ピタゴラス数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'90一橋大学過去問題
直角三角形の3辺が整数
面積は偶数であることを示せ。

*図は動画内参照
この動画を見る 

数学「大学入試良問集」【3−1 整数 不定方程式】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$p,q,r$は不等式$p \leqq q \leqq r$を満たす正の整数とする。
このとき、次の各問いに答えよ。
(1)
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}=1$を満たす$p,q$をすべて求めよ。

(2)
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{r}=1$を満たす$p,q,r$をすべて求めよ。
この動画を見る 
PAGE TOP