福田のわかった数学〜高校3年生理系091〜グラフを描こう(13)指数関数、凹凸、漸近線 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系091〜グラフを描こう(13)指数関数、凹凸、漸近線

問題文全文(内容文):
数学III グラフを描こう(13)

y=e1x21 (1<x<1)
のグラフを描け。凹凸、漸近線を調べよ。
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学III グラフを描こう(13)

y=e1x21 (1<x<1)
のグラフを描け。凹凸、漸近線を調べよ。
投稿日:2021.11.04

<関連動画>

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第1問〜三角関数、指数関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
[1](1)次の問題Aについて考えよう。
A y=sinθ+3cosθ(0θπ2)$

sinπ    =32, cosπ    =12
であるから、三角関数の合成により

y=    sin(θ+π    )

と変形できる。よって、yθ=π    で最大値      をとる。

(2)pを定数とし、次の問題Bについて考えよう。
B y=sinθ+pcosθ(0θπ2)

(i) p=0のとき、yθ=π    で最大値      をとる。
(ii) p>0のときは、加法定理
cos(θα)=cosθcosα+sinθsinα
を用いると
y=sinθ+pcosθ=    cos(θα)
と表すことができる。ただし、α
sinα=        cosα=        0<α<π2
を満たすものとする。このとき、yθ=    で最大値
    をとる。

(iii) p<0のとき、yθ=    で最大値    をとる。

                の解答群(同じものを繰り返
し選んでもよい。)
1
1
p
p
1p
1+p
p2
p2
1p2
1+p2
(1p)2
(1+p)2


        の解答群(同じものを繰り返し選んでもよい。)
0
α
π2


[2]二つの関数f(x)=2x+2x2g(x)=2x2x2 について考える。

(1)f(0)=    g(0)=    である。また、f(x)は相加平均
と相乗平均の関係から、x=    で最小値      をとる。
g(x)=2 となるxの値はlog2(        )である。

(3)次の①~④は、xにどのような値を代入しても常に成り立つ。
f(x)=     
g(x)=     
{f(x)}2{g(x)}2=     
g(2x)=     f(x)g(x) 

        の解答群(同じものを繰り返し選んでもよい。)
f(x)
f(x)
g(x)
g(x)


(3)花子さんと太郎さんは、f(x)g(x)の性質について話している。

花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式(A)~(D)を考えてみたけど、
常に成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式(A)~(D)のβに何か具体
的な値を代入して調べてみたらどうかな。

太郎さんが考えた式
f(αβ)=f(α)g(β)+g(α)f(β) (A)
f(α+β)=f(α)f(β)+g(α)g(β) (B)
g(αβ)=f(α)f(β)+g(α)g(β) (C)
g(α+β)=f(α)g(β)g(α)f(β) (D)


(1),(2)で示されたことのいくつかを利用すると、式(A)~(D)のうち、
    以外の三つは成り立たないことが分かる。    は左辺と右辺
をそれぞれ計算することによって成り立つことが確かめられる。

    の解答群
(A)
(B)
(C)
(D)

2021共通テスト過去問
この動画を見る 

【数Ⅱ】【指数関数と対数関数】指数計算3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ
(1)y=2x+1
(2)y=(15)x1
(3)y=42x
(4)y=3x1

次の数の大小を不等号を用いて表せ
(1)212 313 716
(2)230 320 1010

次の方程式,不等式を解け
(1)4x+2x+124=0
(2)102x+10x=2
(3)9x+1283x+3=0
(4)16x34x40
(5)19x13x6<0
(6)14x1912x+2>0

次の関数の最大値,最小値があれば,それを求めよまた,そのときのxの値を求めよ
(1)y=22x42x+1
(2)y=4x+2x+2(1x2)
この動画を見る 

福田の1.5倍速演習〜合格する重要問題021〜一橋大学2016年度文系数学第4問〜絶対値の付いた3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とし、f(x)=x33axとする。区間1x1における
|f(x)|の最大値をMとする。Mの最小値とそのときのaの値を求めよ。

2016一橋大学文系過去問
この動画を見る 

【数学Ⅲ】指数の積分(意外と解ける?)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅲ】指数の積分解説動画です
-----------------
01atb1tdtを求めよ
この動画を見る 

【数Ⅱ】【指数対数】指数計算1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0,b>0とする。次の式を計算せよ。
(1)(a12+a14b14+b12)(a12-a14b14+b12)
(2)(ax3-bx3)(a2x3+ax3bx3+b2x3)

(1)(64+54)(64-54)
(2)(43+23)3+(43-23)3

(1) 325
(2) 1643
(3) 543×223×163
(4) 243+813)+33

x13+x13=3のとき、x+x1, x3+x3の値を求めよ。
この動画を見る 
PAGE TOP preload imagepreload image