【不定方程式の特解はこれで楽勝】合同式を使った不定方程式の解き方を解説!〔数学 高校数学〕 - 質問解決D.B.(データベース)

【不定方程式の特解はこれで楽勝】合同式を使った不定方程式の解き方を解説!〔数学 高校数学〕

問題文全文(内容文):
合同式を使った不定方程式の解き方について解説します。
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
合同式を使った不定方程式の解き方について解説します。
投稿日:2022.04.06

<関連動画>

福田の数学〜慶應義塾大学2023年医学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ nを自然数とする。A君とB君の2人が以下の試合Tをnセット行い、それぞれが得点をためていくとする。
試合T:2人で腕ずもうを繰り返し行う。毎回、A君, B君のどちらも勝つ確率は$\frac{1}{2}$ずつである。どちらかが先に2勝したら、腕ずもうを行うのをやめる。2勝0敗の者は2点を、2勝1敗の者は1点を得る。2勝しなかった者の得点は0点である。
A君が1セット目からnセットまでに得た点の合計を$a_n$とし、B君が1セット目からnセットまでに得た点の合計を$b_n$とする。
(1)n=1とする。$a_1$=2である確率は$\boxed{\ \ あ\ \ }$であり、$a_1$=1である確率は$\boxed{\ \ い\ \ }$である。
(2)n≧4とする。試合Tをnセット行ううち、A君が2点を得るのがちょうど2セット、かつ1点を得るのがちょうど2セットである確率は$\frac{\boxed{\ \ う\ \ }}{\boxed{\ \ え\ \ }}$である。
(3)n≧2とする。$a_n$=$n$+2かつ$b_n$=0である確率は$\frac{\boxed{\ \ お\ \ }}{\boxed{\ \ か\ \ }}$である。
(4)$a_n$=2である確率は$\frac{\boxed{\ \ き\ \ }}{\boxed{\ \ く\ \ }}$である。
(5)n=4とする。$a_4$>$b_4$である確率は$\frac{\boxed{\ \ け\ \ }}{\boxed{\ \ こ\ \ }}$である。

2023慶應義塾大学医学部過去問
この動画を見る 

福田のわかった数学〜高校1年生079〜場合の数(18)連続しない自然数の選び方

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(18) 連続しない整数\\
1,2,3,\ldots,19,20の20個の数字から、どの2つも連続しないような8個の数字を\\
選ぶ方法は何通りあるか。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校1年生083〜確率(3)さいころの目の積の確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(3) さいころの目(1)\\
さいころをn回投げて出た目の積が6の倍数となる\\
確率を求めよ。ただし、nは2以上の自然数とする。
\end{eqnarray}
この動画を見る 

対数方程式 華麗に解こう

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$3^{\log_2 x}+3^{\log_2 \frac{8}{x}}=12$
この動画を見る 

オイラーの多面体定理 説明(英語)

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの多面体定理 説明動画です
この動画を見る 
PAGE TOP