15度75度90度の直角三角形の比 - 質問解決D.B.(データベース)

15度75度90度の直角三角形の比

問題文全文(内容文):
x:y:z=?
*図は動画内参照
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x:y:z=?
*図は動画内参照
投稿日:2023.12.10

<関連動画>

平方根と式の値 京都橘 2024

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=2\sqrt 5 \\
a-b=-2\sqrt 3
\end{array}
\right.
\end{eqnarray}
$a^2+b^2=?$

2024京都橘大学
この動画を見る 

【高校数学】整式①~数学の基本~ 1-1【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【高校数学】整式 数学の基本説明動画です
この動画を見る 

気付ける男は一味違う。面積比

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
三角形の比
△ABD:△CDE=?
*図は動画内参照
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第4問〜折り紙を折ってできる線分、角、面積を求める

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 一辺の長さが2の正方形の折り紙 ABCD を次の手順にしたがって折る。\\
(1) A と B、DとCを合わせて ADがBCに重なるように谷折りし、折り目をつけて\\
開く。AB および DC 上にあるこの谷折り線の端点をそれぞれEおよびFとする。\\
(2 ) AF が谷折り線になるよう に谷折りし、折り目をつけて開く。\\
(3) A を谷折り線の端点の1つとして、AB がAF 上に重なるように谷折りし、折り\\
目をつけて開く。BC上にあるこの谷折り線のもう1つの端点をGとする。\\
(4) D と A、CとBを合わせてDCがABに重なるように谷折りして、折り目をつけ\\
る。AD およびBC 上にあるこの谷折り線の端点をそれぞれHおよびIとする。\\
(5) C と B がいずれもGと重なるように2枚重ねて谷折りし、CIおよびBI 上に折り\\
目をつけて開く。この折り目の点をそれぞれ」およびKとする (A, E, B, K は\\
それぞれ D, F, C, J と重なっているため図中には表示していない)\\
(6) HI を谷折り線とする谷折りを開く (A, E, B, KはそれぞれD, F, C, J と重なって\\
いるため図中には表示していない)\\
(7) K を谷折り線の端点の1つとして、JがAB上に重なるように谷折りし、折り目\\
をつける。AD上にあるこの谷折り線のもう1つの端点をしとし、AB上にある\\
Jが重なる点をMとする。\\
(8)KLを谷折り戦とする谷折りを開く(MはJと重なっているため表示していない)\\
(9)Mを谷折り線の端点の1つとして、AとDがそれぞれBEとCF上にくるように\\
谷折りし、折り目をつけて開く。DC上にあるこの谷折り線のもう1つ端点を\\
Nとする。\\
(10)折るのをやめる。\\
\\
このとき、BG=\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }},JK=\boxed{\ \ オカ\ \ }+\sqrt{\boxed{\ \ キク\ \ }},JM=\boxed{\ \ ケコ\ \ },\\
\\
\cos\angle JKM=\frac{\boxed{\ \ サシ\ \ }+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }}\\
\\
ここで、\triangle JKMの面積をS_1,\triangle JMNの面積をS_2とすると\\
\\
\frac{S_2}{S_1}=\frac{\boxed{\ \ テト\ \ }+\sqrt{\boxed{\ \ ナニ\ \ }}}{\boxed{\ \ ヌネ\ \ }}\\
\\
となる。\\
※(1)~(10)の画像は動画参照
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

格子点を通るということは?【山口大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
座標平面上で、$x$座標,$y$座標が共に整数である点を格子点という。
原点を通る2直線$l,m$がそれぞれ原点以外にも格子点を通るとき、
$l,m$のなす角は、$60°$にならないことを証明せよ。
ただし、$\sqrt3$が無理数であることを証明なしに用いても良い。

山口大過去問
この動画を見る 
PAGE TOP