【高校受験対策】数学-死守7 - 質問解決D.B.(データベース)

【高校受験対策】数学-死守7

問題文全文(内容文):
1.次の計算をしなさい.

①$4+(-9)$

②$2-3\times (-2)$

③$3ab-ab$

2.次の各問に答えなさい.

④次の$\Box$に当てはまる記号を,
$=,<,>$の中から選びなさい.

$(-6)^2\Box -6^2$

⑤$(x+2y)(x-2y)$を展開しなさい.

⑥$x^2+2x-8$を因数分解しなさい.

⑦$x=\sqrt2,y=(\sqrt3 -\sqrt2)$のとき,
$x^2+xy$の値を求めなさい.

⑧方程式$\dfrac{1}{2}x+3=2x$を解きなさい.

⑨連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x + y = 8 \\
x - 3y =15
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑩右の図で,点$A,B,C,D$は円$O$の周上の点で,
$\angle ADB=36°$,線分$AC$は円$O$の直径である.
このとき,$\angle BAC$の大きさを求めなさい.

⑪1つのさいころを2回投げるとき,
2回目に出た目の数が,1回目に出た目の数の約数となる
確率を求めなさい.

図は動画内を参照
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#確率#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$4+(-9)$

②$2-3\times (-2)$

③$3ab-ab$

2.次の各問に答えなさい.

④次の$\Box$に当てはまる記号を,
$=,<,>$の中から選びなさい.

$(-6)^2\Box -6^2$

⑤$(x+2y)(x-2y)$を展開しなさい.

⑥$x^2+2x-8$を因数分解しなさい.

⑦$x=\sqrt2,y=(\sqrt3 -\sqrt2)$のとき,
$x^2+xy$の値を求めなさい.

⑧方程式$\dfrac{1}{2}x+3=2x$を解きなさい.

⑨連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x + y = 8 \\
x - 3y =15
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑩右の図で,点$A,B,C,D$は円$O$の周上の点で,
$\angle ADB=36°$,線分$AC$は円$O$の直径である.
このとき,$\angle BAC$の大きさを求めなさい.

⑪1つのさいころを2回投げるとき,
2回目に出た目の数が,1回目に出た目の数の約数となる
確率を求めなさい.

図は動画内を参照
投稿日:2016.11.23

<関連動画>

どうか筆算しないで。。。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$19 \times 21 + 20^2 - 40 \times 19 +19^2$

清風高等学校
この動画を見る 

中2数学「式による説明①(偶数と奇数)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第10回式による説明①~(偶数と奇数)

例1
偶数と奇数の和は奇数になることを説明しなさい。

例2
奇数と奇数の和は偶数になることを説明しなさい。

例3
偶数と奇数の積は偶数になることを説明しなさい。
この動画を見る 

【高校受験対策】数学-死守11

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えなさい.

①$(-2)\times (-3)+4$を計算しなさい.

②$\dfrac{2}{5}a+\dfrac{1}{3}a$を計算しなさい.

③$4(x+2y)-(6x+9y)$を計算しなさい.

④$5xy^2\times 7xy \div (-x)^2$を計算しなさい.

⑤$(\sqrt{2}+1)^2-\sqrt8$を計算しなさい.

⑥$x$についての2次方程式$x^2+ax-12=0$の解の一つが
$-2$であるとき,もう一つの解を求めなさい.

⑦右の図1のような半径$9cm$の半球があります.
この半球と等しい体積の円錐について考えます.
円錐の底面の半径が$9cm$であるとき,円錐の高さは何$cm$か求めなさい.

⑧右の図2は,ある学校の3年生50人の通学時間を調査し,
ヒストグラムに表したもので,平均値は$16.3$分でした.
下のアから工までの中から,
このヒストグラムからわかることについて正しく述べたものを1つ選び,
記号で答えなさい.

ア 通学時間の範囲は,16分である.

イ 通学時間の最頻値は,平均値よりも大きい.

ウ 通学時間の中央値が含まれる階級は,15分以上20分未満の階級である.

工 通学時間が20分以上25分未満の階級の相対度数は,$0.16$である.

図は動画内を参照
この動画を見る 

中2数学「式の値」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例題
$x=-3,y=2$のとき,次の式の値を求めなさい.

(1)$2(3x-2y)-3(x+5y)$
(2)$6x^3y^2\div 3xy^3$
この動画を見る 

穴埋め  大阪教育大附属平野

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
▢を埋めよ
\begin{array}{r}
▢▢ \\[-3pt]
\underline{\times\phantom{0}▢▢}\\[-3pt]
▢▢▢ \\[-3pt]
\underline{\phantom{0}▢▢▢\phantom{0}} \\[-3pt]
9216
\end{array}

大阪教育大学附属高等学校平野校舎
この動画を見る 
PAGE TOP