【高校受験対策】数学-死守7 - 質問解決D.B.(データベース)

【高校受験対策】数学-死守7

問題文全文(内容文):
1.次の計算をしなさい.

①$4+(-9)$

②$2-3\times (-2)$

③$3ab-ab$

2.次の各問に答えなさい.

④次の$\Box$に当てはまる記号を,
$=,<,>$の中から選びなさい.

$(-6)^2\Box -6^2$

⑤$(x+2y)(x-2y)$を展開しなさい.

⑥$x^2+2x-8$を因数分解しなさい.

⑦$x=\sqrt2,y=(\sqrt3 -\sqrt2)$のとき,
$x^2+xy$の値を求めなさい.

⑧方程式$\dfrac{1}{2}x+3=2x$を解きなさい.

⑨連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x + y = 8 \\
x - 3y =15
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑩右の図で,点$A,B,C,D$は円$O$の周上の点で,
$\angle ADB=36°$,線分$AC$は円$O$の直径である.
このとき,$\angle BAC$の大きさを求めなさい.

⑪1つのさいころを2回投げるとき,
2回目に出た目の数が,1回目に出た目の数の約数となる
確率を求めなさい.

図は動画内を参照
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#確率#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$4+(-9)$

②$2-3\times (-2)$

③$3ab-ab$

2.次の各問に答えなさい.

④次の$\Box$に当てはまる記号を,
$=,<,>$の中から選びなさい.

$(-6)^2\Box -6^2$

⑤$(x+2y)(x-2y)$を展開しなさい.

⑥$x^2+2x-8$を因数分解しなさい.

⑦$x=\sqrt2,y=(\sqrt3 -\sqrt2)$のとき,
$x^2+xy$の値を求めなさい.

⑧方程式$\dfrac{1}{2}x+3=2x$を解きなさい.

⑨連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x + y = 8 \\
x - 3y =15
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑩右の図で,点$A,B,C,D$は円$O$の周上の点で,
$\angle ADB=36°$,線分$AC$は円$O$の直径である.
このとき,$\angle BAC$の大きさを求めなさい.

⑪1つのさいころを2回投げるとき,
2回目に出た目の数が,1回目に出た目の数の約数となる
確率を求めなさい.

図は動画内を参照
投稿日:2016.11.23

<関連動画>

【高校受験対策】数学-死守25

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#円#文章題#文章題その他#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-4-8$を計算しなさい.

②$\dfrac{1}{3}-\dfrac{3}{7}$を計算しなさい.

③$\sqrt{50}-\sqrt{32}$を計算しなさい.

④2次方程式$x^ 2 - 5x + 2 = 0$を解きなさい.

⑤図1のように,四角形$ABCD$の3つの頂点における外角が
わかっているとき,$\angle x$の大きさを求めなさい.

⑥図2のような半径$6cm$の半球の表面積と体積を求めなさい.
ただし,円周率は$\pi$とする.

⑦右の表は,あるクラスの1日の家庭での学習時間を
度数分布表にまとめたものである.
この表から$\Box$にあてはまる数と最頻値(モード) を求めなさい.

⑧ある家庭では,昨年1月の電気代と水道代の1日当たりの合計額は530円だった.
その後,家族で節電・節水を心がけたため,今年1月の1日当たりの額は,
昨年1月と比較して電気代は15%,水道代は10%減り,
1日当たりの合計額は460円となった.
昨年1月の1日当たりの電気代と水道代はそれぞれ何円か,求めなさい.

図は動画内参照
この動画を見る 

【高校受験対策/数学】死守56

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#資料の活用#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守56

①$4-6 \div (-2)$を計算しなさい。

②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。

③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。

④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。

⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。

⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。

⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。

⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
この動画を見る 

2025年浦和明の星女子中算数大問1(1)~(3)中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#方程式#式の計算(単項式・多項式・式の四則計算)
指導講師: 重吉
問題文全文(内容文):
(12-9/2+1.25)+17.5*8/3-6/5*(3-2.88)+3/10

計算問題の宿題がでました。明子さんは1日目に全体の1/3と4問、2日目に残りの半分と2問、3日目には12問解いて、宿題をすべて終えました。問題は全部で何問ありましたか。

濃さの違う3つの食塩水A,B,Cがあり、それぞれの濃さは9%、12%、18%です。AとBの食塩水を2:1の重さの比で混ぜた後、Cの食塩水を加えて、合計240gの食塩水を作りました。その後、できた食塩水から水をすべて蒸発させたところ、残った食塩の重さは36gでした。混ぜたAの食塩水の重さは何gであったか答えなさい。
この動画を見る 

正負の数の計算、工夫しよう!膳所高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$42.9 \times \frac{5}{13} - 14.3 \times (\frac{7}{26} - \frac{1}{13} + \frac{1}{2})$
膳所高等学校
この動画を見る 

気付けば一瞬!!式の値 受験生よ。努力が実ることを証明せよ。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$x+\frac{1}{x}=99$のとき
$\frac{2x^2+102x+2}{100x}$の値は?
この動画を見る 
PAGE TOP