大学入試問題#630「落ち着いて慌てない」 東京理科大学(2015) #指数対数 - 質問解決D.B.(データベース)

大学入試問題#630「落ち着いて慌てない」 東京理科大学(2015) #指数対数

問題文全文(内容文):
$f(x)=\displaystyle \frac{2^x-2^{-x}}{2}$とする
$f(b)=\displaystyle \frac{15}{8}$のとき
$f(b+log_23)$の値を求めよ

出典:2015年東京理科大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{2^x-2^{-x}}{2}$とする
$f(b)=\displaystyle \frac{15}{8}$のとき
$f(b+log_23)$の値を求めよ

出典:2015年東京理科大学 入試問題
投稿日:2023.10.25

<関連動画>

福田の数学〜立教大学2021年理学部第1問(5)〜対数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (5)$A=4^{(4^4)},\ B=(4^4)^4$のとき、$\log_2(\log_2A)-\log_2(\log_2B)$の値を
整数で表すと$\boxed{\ \ カ\ \ }$である。

2021立教大学理工学部過去問
この動画を見る 

対数 札幌医科大

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$2^n$が4桁となる自然数を求めよ.
②$5^{130}$は何桁か.

2019札幌医大過去問
この動画を見る 

指数・対数の基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^x=9^y=2025$である.
$\dfrac{xy}{x+y}$の値を求めよ.
この動画を見る 

上智大 住宅ローンは月々いくら?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
年利$5$%で毎年1万円積立預金20万円を超えるのは何年後か.
$\log_{10}2=0.3010$
$\log_{10}3=0.4771$
$\log_{10}7=0.8450$

2018上智大過去問
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(5)〜対数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)$x$についての方程式
$(\log_2x)^2+5\log_2x+2=0$
の2つの解を$\alpha,\beta$とおくと、$\alpha\beta=\boxed{キ}$である。

2021立教大学経済学部過去問
この動画を見る 
PAGE TOP