数検1級2次過去問(6番 面積の最大値) - 質問解決D.B.(データベース)

数検1級2次過去問(6番 面積の最大値)

問題文全文(内容文):
6⃣ 円 : $x^2+y^2=1$上に図のように点Pをとる。
AP+PH
の最大値と、そのときの座標を求めよ。
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
6⃣ 円 : $x^2+y^2=1$上に図のように点Pをとる。
AP+PH
の最大値と、そのときの座標を求めよ。
投稿日:2020.12.04

<関連動画>

#68数学検定1級1次「答えはめっちゃスッキリ」 #定積分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{ 1 } \displaystyle \frac{x^4+2x^3+4x^2+6x+2}{x^3+2x^2+2x+4}$ $dx$

出典:数検1級1次
この動画を見る 

重積分⑧-3【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$∬_De^{-(x+y)^2}dxdy$
$D:x \geqq 0 , y \geqq 0 , x+y \leqq 1$
この動画を見る 

#27 数検1級1次 過去問 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y:$正の整数
$x+y=316$
$x:13$の倍数
$y:11$の倍数
をみたす組$(x,y)$をすべて求めよ。
この動画を見る 

重積分⑫-1【図形Dの重心】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#その他#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
平面上の図形Dの重心Gは
$G\begin{pmatrix}
∬_Dxdxdy & ∬_Dydxdy \\
∬_Ddxdy & ∬_Ddxdy
\end{pmatrix}$
△OABの重心Gは
$G(\frac{0+3+3}{3},\frac{0+0+3}{3})$
$G(2,1)$
*図は動画内参照
この動画を見る 

微分方程式⑤-1【1階線形微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\frac{dx}{dt}=- \frac{x}{t}=t+1$
(2)$\frac{dx}{dt}+x=e^{-t}$
(3)$\frac{dx}{dt}+xcost = 2te^{-sint}$
1階線形微分方程式
$\frac{dx}{dt}+P(t)x=Q(t)$
この動画を見る 
PAGE TOP