【中学数学】連立方程式a,b を求める問題演習 2-5.5【中2数学】 - 質問解決D.B.(データベース)

【中学数学】連立方程式a,b を求める問題演習 2-5.5【中2数学】

問題文全文(内容文):
連立方程式の解が$x=2,y=-1$であるとき、$a,b$の値を求めよ
\begin{eqnarray}
\left\{
\begin{array}{l}
ax+by=3 \\
bx-2ay=18
\end{array}
\right.
\end{eqnarray}
チャプター:

00:00 はじまり

00:14 問題

00:26 問題解説

02:28 まとめ

02:50 問題と答え

単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
連立方程式の解が$x=2,y=-1$であるとき、$a,b$の値を求めよ
\begin{eqnarray}
\left\{
\begin{array}{l}
ax+by=3 \\
bx-2ay=18
\end{array}
\right.
\end{eqnarray}
投稿日:2021.06.17

<関連動画>

中2数学「直角三角形の合同証明①」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1
次の図のように,$\angle AOB$の二等分線上の点$P$から,
2辺$OA,OB$にそれぞれ垂線$PQ,PR$をひくと,$\triangle PQO \equiv \triangle PRO$であることを証明しなさい.

例2
次の図のように,$\angle AOB$の内部の点$P$から,
2辺$OA,OB$にそれぞれひいた垂線$PQ,PR$の長さが等しいとき,
$\triangle PQO \equiv \triangle PRO$であることを証明しなさい.
この動画を見る 

連立2元4次方程式

アイキャッチ画像
単元: #連立方程式#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4+x^2y^2+y^4=63 \\
x^2+xy+y^2=9
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

【数学】中2-79 確率チャレンジ Lv.1(基本編)

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
確率をだすときは基本的に①___を使い、
公式は・・・
確率=$\displaystyle \frac{③   }{④   } $なんだ!

◎1つのさいころを投げる!

④5の目がでる確率は?
⑤4以下の目が?
⑥7の目が ?
⑦1けたの数字の目が その他の動画でる確率は?
⑧A.B.C.Dの4人でリレーをします。 4人の走る順番は全部で何通り?
⑨A~Eの中から2人の選手をえらぶと 選び方は全部で何通り?
①~⑨をそれぞれ答えよ。
この動画を見る 

手強いぞ 連立方程式 慶應義塾(神奈川)

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け(x>y)
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2y + xy^2 -9xy = 120 \\
xy + x + y - 9 = -22
\end{array}
\right.
\end{eqnarray}

2023慶應義塾高等学校(改)
この動画を見る 

福田のおもしろ数学016〜ジュニア数学オリンピック予選問題〜正三角形の面積

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#中2数学#数学検定・数学甲子園・数学オリンピック等#平面図形#角度と面積#平面図形#三角形と四角形#数学オリンピック
指導講師: 福田次郎
問題文全文(内容文):
正三角形 ABC を図のように、 3 辺に平行な線分を 1 本ずっ引いて分割した。書かれている数は分割してできた正三角形の面積を表している。このとき、正三角形の面積を求めよ。
※図は動画内参照

ジュニア数学オリンピック過去問
この動画を見る 
PAGE TOP