大学入試問題#687「なんか見える」 東海大学医学部(2014) - 質問解決D.B.(データベース)

大学入試問題#687「なんか見える」 東海大学医学部(2014)

問題文全文(内容文):
$a \gt 0$のとき、
$a+\displaystyle \frac{17}{a+4}$の最小値を求めよ

出典:2014年東海大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$のとき、
$a+\displaystyle \frac{17}{a+4}$の最小値を求めよ

出典:2014年東海大学医学部 入試問題
投稿日:2023.12.28

<関連動画>

大学入試問題#620「ほぼ一択」 横浜国立大学(2023) #定積分 僚太さんの紹介

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{log\frac{\pi}{4}}^{log\frac{\pi}{2}} \displaystyle \frac{e^{2x}}{\{\sin(e^x)\}^2} dx$

出典:2023年横浜国立大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第1問〜三角関数で表された点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#三角関数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ a,bを定数とし、関数$f(x)=x^2+ax+b$ とする。方程式$f(x)=0$の2つの解$\alpha,\beta\\$
が次式で与えられている。
$\alpha=\frac{\sin\theta}{1+\cos\theta}$, $\beta=\frac{\sin\theta}{1-\cos\theta}\\$
ここで$\theta$は、$0 \lt \theta \lt \pi$の定数である。次の問いに答えよ。
$(1)a,b$を$\theta$を用いて表せ。
$(2)\theta$が$0$ $\lt \theta \pi$で変化するとき、放物線$y=f(x)$の頂点の軌跡を求めよ。
$(3)\int_0^{2\sin\theta}f(x)dx=0$ となる$\theta$の値を全て求めよ。


2021早稲田大学社会科学部過去問
この動画を見る 

福田の数学〜早稲田大学理工学部2025第1問〜複素数平面上の点の軌跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

複素数平面上で、複素数$z$が円$\vert z \vert=1$の上の点を動くとき、

$w=\left(\dfrac{1+\sqrt2}{2}\right)z+\left(\dfrac{1-\sqrt2}{2}\right)\dfrac{1}{z}$

を満たす点$w$の軌跡を$C$とする。

次の問いに答えよ。

(1)$C$はどのような図形か。複素数平面上に図示せよ。

(2)$C$と円$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert =\sqrt2$の共有点を求めよ。

(3)$C$で囲まれる領域と$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert \leqq \sqrt2$の

表す領域の共通部分の面積を求めよ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 

大学入試問題#437「y-xが邪魔なんだけど・・・・」 信州大学(2014) #不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
すべての実数$x,y$に対して
$\displaystyle \frac{1}{1+x^2+(y-x)^2} \leqq \displaystyle \frac{a}{1+x^2+y^2}$が成り立つような$a$の値の範囲を求めよ。

出典:2014年信州大学医学部 入試問題
この動画を見る 

n進法に苦手意識ある人必見!難しいことはありません【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を4以上の自然数とする。数2,12,1331がすべて$n$進法で表記されているとして,

$2^{12}=1331$

が成り立っている。このとき$n$はいくつか。十進法で答えよ。

京都大過去問
この動画を見る 
PAGE TOP