大分大 漸化式 - 質問解決D.B.(データベース)

大分大 漸化式

問題文全文(内容文):
一般項$a_n$を求めよ.
$S_n=(n+3)(\dfrac{1}{3}a_n-2)$

2020大分大過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項$a_n$を求めよ.
$S_n=(n+3)(\dfrac{1}{3}a_n-2)$

2020大分大過去問
投稿日:2021.05.04

<関連動画>

福田のおもしろ数学426〜99個の分数の積を効率よく求める

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\prod_{ k = 1 }^n ak=a_1a_2\cdots a_n
\end{eqnarray}$とするとき、

$\displaystyle \prod_{k=2}^{100} \dfrac{k^3+1}{k^3-1}$を求めよ。
   
この動画を見る 

2020年 大阪大 確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Q$は$A$にいる。
サイコロを振って
$1$→時計回りに隣へ
$2$→反時計回りに隣へ
$3~6$→動かない

$n$回目に$A$にいる確率を$P_n$
(1)
$P_2$を求めよ

(2)
$P_{n+1}$を$P_n$で表せ

(3)
$P_n$を求めよ

出典:2020年大阪大学 過去問
この動画を見る 

弘前大(医、他)分数型漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010弘前大学過去問題
$a_1 = 4 \quad a_{n+1} = \frac{4a_n+3}{a_n+2}$
(1) $b_n = \frac{a_n -3}{a_n+1}$
$b_n$の漸化式を求めよ。
(2)$a_n$を求めよ。
この動画を見る 

東京薬科大 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1,11,111,1111,…$
第$n$項と初項から第$n$項までの和を求めよ

出典:東京薬科大学 過去問
この動画を見る 

Σ立法の和の公式を視覚的に

アイキャッチ画像
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1^3+2^3+\cdots+n^3=\{ \frac{n(n+1)}{2} \}^2$
$1^2+2^2+3^2+\cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$
この動画を見る 
PAGE TOP