【理数個別の過去問解説】2019年度 明治大学 経営学部 数学 第3問解説(2) - 質問解決D.B.(データベース)

【理数個別の過去問解説】2019年度 明治大学 経営学部 数学 第3問解説(2)

問題文全文(内容文):
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
  (1) $2x^2+y^2$の最小値
  (2)$\log_{10}x+2\log_{10}y$の最大値
  (3)$\dfrac{1}{x}+\dfrac{2}{y}$ の最小値
チャプター:

0:00 オープニング
0:30 対数式を整理する
1:34 関数式の最大を求める
3:08 解答
4:14 まとめ

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
  (1) $2x^2+y^2$の最小値
  (2)$\log_{10}x+2\log_{10}y$の最大値
  (3)$\dfrac{1}{x}+\dfrac{2}{y}$ の最小値
備考:【数Ⅰ】明治大学経営学部(2019年)数学第3問 ①
https://youtu.be/iOXnwxxf_ZI

【数Ⅱ】明治大学経営学部入試問題2019年数学第3問②
https://youtu.be/hM41zIUOtdw

【数Ⅱ】明治大学経営学部入試問題2019年数学第3問③
https://youtu.be/sfECgtn4R74
投稿日:2022.04.09

<関連動画>

福田の数学〜京都大学2022年文系第2問〜条件を満たす経路の総数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って
頂点をn回移動する。すなわち、この移動経路
$P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n$ (ただし$P_0=A$)
において、$P_0P_1,P_1P_2,\ldots,P_{n-1}P_n$は全て辺であるとする。
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点$P_n$がA,B,Cの
いずれかとなるものの総数$a_n$を求めよ。

2022京都大学文系過去問
この動画を見る 

大学入試問題#628「3分クッキング!」 東邦大学医学部(2015) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{2} \displaystyle \frac{x^2・2^{-x}}{2^x+2^{-x}} dx$

出典:2015年東邦大学医学部 入試問題
この動画を見る 

大学入試問題#812「怖いのは計算ミスのみ」 #福島県立医科大学(2016) #積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=\cos\ x+\displaystyle \int_{0}^{\pi} \sin(x-t)f(t)dt$を満たす関数$f(x)$を求めよ。

出典:2016年福島県立医科大学 入試問題
この動画を見る 

【概要欄必読】大学入試問題#172 東京都市大学 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\sqrt{ 3 }}{2}}(x+4x^3)\sqrt{ 1+4x^2 }\ dx$

出典:東京都市大学 入試問題
この動画を見る 

福田の数学〜立教大学2021年理学部第2問〜2直線のなす角の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$座標平面において、放物線$y=x^2$上の点でx座標が$p,p+1,p+2$である点を
それぞれ$P,Q,R$とする。また、直線PQの傾きを$m_1$、直線PRの傾きを$m_2$、
$\angle QPR=\theta$とする。

(1)$m_1,\ m_2$をそれぞれ$p$を用いて表せ。
(2)$p$が実数全体を動くとき、$m_1m_2$の最小値を求めよ。
(3)$\tan\theta$を$p$を用いて表せ。
(4)$p$が実数全体を動くとき、$\theta$が最大になる$p$の値を求めよ。

2021立教大学理工学部過去問
この動画を見る 
PAGE TOP