文字式を解くにはパターンがある~全国入試問題解法 #shorts, #数学, #高校入試, #頭の体操 - 質問解決D.B.(データベース)

文字式を解くにはパターンがある~全国入試問題解法 #shorts, #数学, #高校入試, #頭の体操

問題文全文(内容文):
$ x+y=-1,xy=-\dfrac{3}{5}$のとき,
$ x^2-3xy+y^2$の値を求めなさい.

法政大第二高校過去問
単元: #数学(中学生)#中1数学#文字と式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x+y=-1,xy=-\dfrac{3}{5}$のとき,
$ x^2-3xy+y^2$の値を求めなさい.

法政大第二高校過去問
投稿日:2024.04.14

<関連動画>

【受験対策】数学-証明1

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#空間図形#平面図形#角度と面積#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,四角形$ABCD$は,$AD /\!/BC,AD\lt BC$の台形である.
辺$CD$の中点を$E$ とし,
辺$BC$の延長と$AE$の延長との交点を$F$とする.
また,頂点$B$から辺$CD$に平行にひいた直線と
$EA$の延長との交点を$G$とするとき,
次の各問いに答えなさい.

①$AE=FE$であることを証明しなさい.

②$\angle DAE=42°,\angle FEC=37$のとき,
$\angle CBG$の大きさを求めなさい.

図は動画内参照
この動画を見る 

図形 中学レベル 円の基本性質の証明

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 鈴木貫太郎
問題文全文(内容文):
円の基本性質の証明に関して解説していきます.
この動画を見る 

【高校受験対策】数学-関数42

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#1次関数#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数42

Q.
右下の図において、直線①、②はそれぞれ関数$y=\frac{1}{2}x$、$y=ax$のグラフであり、②は①を$y$軸の対称の軸として対称移動したものである。
直線③は、直線①上の点$A(4,2)$と$x$軸上の点$B(8,0)$を通る。
また点$P$は、原点$O$を出発して、直線①上を点$A$まで動く点であり、点$P$を通り$x$軸に平行な直線と直線②、③との交点をそれぞれ$C,D$とする。

①$a$の値を求めなさい。

②直線③の式を求めなさい。

③点$P$の$x$座標を$t$、$△ACD$の面積を$S$とするとき、$S$を$t$の式で表しなさい。

④$△APD$の面積が$△OPC$の面積の4倍となるとき、点$P$の座標を求めなさい。
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 

比例  専修大学松戸

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
yはx-1に比例し、x=2のときy=3である。
y=1のときx=?

専修大学松戸高等学校
この動画を見る 
PAGE TOP