動く2点の距離の最小値【大阪大学】【数学 入試問題】 - 質問解決D.B.(データベース)

動く2点の距離の最小値【大阪大学】【数学 入試問題】

問題文全文(内容文):
$C_1:x^2+\displaystyle \frac{y^2}{a^2}=1,C_2:y=2ax-3a$

点Pが$C_1$,点Qが$C_2$上を動く。
線分 PQ の長さの最小値をαを用いて表せ。

大阪大学過去問
チャプター:

00:04 問題文
00:45 (1)解答・解説
06:18 (2)解答・解説

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$C_1:x^2+\displaystyle \frac{y^2}{a^2}=1,C_2:y=2ax-3a$

点Pが$C_1$,点Qが$C_2$上を動く。
線分 PQ の長さの最小値をαを用いて表せ。

大阪大学過去問
投稿日:2024.01.10

<関連動画>

大学入試問題#514「困ったらz=x+yi?」 札幌医科大学(2022) #複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#札幌医科大学
指導講師: ますただ
問題文全文(内容文):
$|z+3i|=2|z|$
$|z+4i|=|z|$
を満たす複素数$z$をすべて求めよ

出典:2022年札幌医科大学 入試問題
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第2問〜方程式の実数解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a$は$0<a<1$を満たす定数とする。 次の方程式の異なる実数解の個数を求めよう。

$x^2=a^-x$

$f(x) = x^2a^x$ とおけば、
$f(x)$ は $x = [ア]$で極小値$[イ]$をとり、$x= [ウ]$で極大値$[エ]$をとる。
また、$lim(x→-∞) f(x)= [オ]$であり、$ lim(x→∞) f(x)=0$ である。

2022明治大学全統理系過去問

この動画を見る 

京都大 2024文系数学

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
ある自然数を八進法,九進法,十進法で表したら桁数が同じ最大の自然数は?
$0.3010<\log_{10}{3}<0.3011$
$0.4771<\log_{10}{2}<0.4772$

2024京都大過去問
この動画を見る 

横浜市立(医)3項間漸化式 良問再投稿

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#解と判別式・解と係数の関係#数列#漸化式#数学(高校生)#数B#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$ 一般項を求めよ
$a_{n+2}-5a_{n+1}+6a_n-6n=0$

出典:2016年横浜市立大学 医学部 過去問
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第4問(4)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科・文科第4問(4)
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、$A=_{4a+1}C_{4b+1},B={}_a\mathrm{C}_b$に対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。${}_{4a+1}\mathrm{C}_{4b+1}wp4$で割った余りは${}_a\mathrm{C}_b$を4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
この動画を見る 
PAGE TOP