問題文全文(内容文):
$C_1:x^2+\displaystyle \frac{y^2}{a^2}=1,C_2:y=2ax-3a$
点Pが$C_1$,点Qが$C_2$上を動く。
線分 PQ の長さの最小値をαを用いて表せ。
大阪大学過去問
$C_1:x^2+\displaystyle \frac{y^2}{a^2}=1,C_2:y=2ax-3a$
点Pが$C_1$,点Qが$C_2$上を動く。
線分 PQ の長さの最小値をαを用いて表せ。
大阪大学過去問
チャプター:
00:04 問題文
00:45 (1)解答・解説
06:18 (2)解答・解説
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$C_1:x^2+\displaystyle \frac{y^2}{a^2}=1,C_2:y=2ax-3a$
点Pが$C_1$,点Qが$C_2$上を動く。
線分 PQ の長さの最小値をαを用いて表せ。
大阪大学過去問
$C_1:x^2+\displaystyle \frac{y^2}{a^2}=1,C_2:y=2ax-3a$
点Pが$C_1$,点Qが$C_2$上を動く。
線分 PQ の長さの最小値をαを用いて表せ。
大阪大学過去問
投稿日:2024.01.10