対数の基本 - 質問解決D.B.(データベース)

対数の基本

問題文全文(内容文):
$a\gt 0,b\gt 0$
$a^2+b^2=1$
$\log_a b^2=\log_b ab$
実数$(a,b)$を求めよ.
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\gt 0,b\gt 0$
$a^2+b^2=1$
$\log_a b^2=\log_b ab$
実数$(a,b)$を求めよ.
投稿日:2021.07.04

<関連動画>

岐阜薬科大 対数の不等式 良問

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_x y-\log_y x^{\frac{1}{2}}\lt -\dfrac{1}{2}$を満たす点$(x,y)$の領域を図示せよ.

岐阜薬科大過去問
この動画を見る 

福田のおもしろ数学206〜x乗根の方程式の解

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\sqrt[ x ]{ 36 } + \sqrt[ x ]{ 24 } = \sqrt[ x ]{ 16 }$ を満たす $x$ を求めよ。
この動画を見る 

大学入試問題#537 京都府立医科大学2015 #整数問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#京都府立医科大学
指導講師: ますただ
問題文全文(内容文):
(1)
$0 \lt a \lt b$とする
$a^b=b^a$のとき$1 \lt a \lt e \lt b$を示せ

(2)
$\sqrt{ 5 }^{\sqrt{ 7 }}$と$\sqrt{ 7 }^{\sqrt{ 5 }}$の大小を比較せよ

出典:2015年京都府立医科大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第2問(1)〜指数対数不等式の表す領域の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#軌跡と領域#指数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
(1)次の連立不等式の表す領域の面積は$\dfrac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}$ である。
$\left\{\begin{array}{1}
\displaystyle\log_4y+\log_{\frac{1}{4}}(x-2)+\log_4\frac{1}{8-x} \geqq -1\\
2^{y+x^2+11} \leqq 1024^{x-1}\\
\end{array}\right.$

2021早稲田大学人間科学部過去問
この動画を見る 

福田の数学〜上智大学2024TEAP利用型理系第1問(3)〜対数不等式を満たす最小の整数

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(i) $\log_{10} 2=0.301$とする。このとき、$\log_{10} 1.28=0.\boxed{ウ}$である。
(ii)$n$は$2$以上の整数とする。$n^{100}<1.28^n$となる最小の$n$について、$2^a \leqq n < 2^{a+1}$となる整数$a$は$\boxed{エ}$
この動画を見る 
PAGE TOP