【高校受験対策】死守-3 - 質問解決D.B.(データベース)

【高校受験対策】死守-3

問題文全文(内容文):
次の各問に答えよ.

①$6+4 \times \left(-\dfrac{1}{2}\right)$を計算せよ.

②$8a+b-(a-7b)$を計算せよ.

③$(\sqrt5 +\sqrt 3)(\sqrt 5-\sqrt3)$を計算せよ.

④1次方程式$9x+2=8(x+1)$を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=4 \\
6x+5y=-7
\end{array}
\right.
\end{eqnarray}$を解け.

⑥2次方程式$x^2-8x-9=0$を解け.

⑦関数$y=\dfrac{1}{3}x^2$について,
$x$の値を3から9まで増加するときの割合を求めよ.
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$6+4 \times \left(-\dfrac{1}{2}\right)$を計算せよ.

②$8a+b-(a-7b)$を計算せよ.

③$(\sqrt5 +\sqrt 3)(\sqrt 5-\sqrt3)$を計算せよ.

④1次方程式$9x+2=8(x+1)$を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=4 \\
6x+5y=-7
\end{array}
\right.
\end{eqnarray}$を解け.

⑥2次方程式$x^2-8x-9=0$を解け.

⑦関数$y=\dfrac{1}{3}x^2$について,
$x$の値を3から9まで増加するときの割合を求めよ.
投稿日:2016.10.24

<関連動画>

2023高校入試数学解説53問目 側面上の最短距離 円錐 神奈川県(再)

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
側面上の点Eから点Fまでの引く線の長さの最小値は?
(線分BCを通る)
*図は動画内参照

2023神奈川県ラスト問題
この動画を見る 

【中1 数学】中1-6 正負のかけ算・わり算①

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
かけ算のことを①____
わり算のことを②____っていうよ!
①、②のルールはすごく簡単で、
同じものは、③____、ちがうものは④____
と覚えよう!
あと、5とか12には ⑤____が隠れているからね!!
◎ここも体が覚えるまで練習しよう!!!
⑥ $(- 3) \times (4) =$
⑦$(- 5) \times (- 2) =$
⑧ $(26) \div (2) =$
⑨$(12) \div (- 3) =$

割り切れない時は⑩___を使おう!

⑪$(-5) \div(-7)=$
⑫$(-12) \div(+18)=$
⑬$9 \times (- 2) =$
⑭$(- 6) \div 3 =$
⑮$(- 24) \div 0 =$
⑯$- 0.8 \div 2 =$
⑰$(- 12) \div 12 =$
⑱$0 \div (- 2, 5) =$
⑲$ 21 \div (- 15) =$
⑳$-0,3 \times (0, 2) =$
㉑$(- 6) \div 0, 2 =$
㉒$0.2 \div (- 6) =$
㉓$-5 \times (-2) \times 3=$
この動画を見る 

正負の数 四則混合

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$9-3 \div \frac{1}{3} + 1$を計算しなさい
この動画を見る 

【使える知識は…限られる!】図形:活水高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$l,m$は平行であり,$AB=BC$である.
$\angle x=\Box$である.

活水高等学校過去問
この動画を見る 

空間上の線分の長さ 昭和学院秀英

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: 数学を数楽に
問題文全文(内容文):
$1辺が4の立方体 平面PFHと直線CEとの交点がQ CQ=? (PはAEの中点)$
この動画を見る 
PAGE TOP