【中学から学ぶ!】正弦定理(1):三角比 特別講義~全国入試問題解法 - 質問解決D.B.(データベース)

【中学から学ぶ!】正弦定理(1):三角比 特別講義~全国入試問題解法

問題文全文(内容文):
$ \triangle ABC$において$ \sin^2 A=\sin^2 B+\sin^2 C$ならばどんな三角形か.
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \triangle ABC$において$ \sin^2 A=\sin^2 B+\sin^2 C$ならばどんな三角形か.
投稿日:2022.08.18

<関連動画>

【短時間でマスター!!】正弦定理・余弦定理を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
正弦定理・余弦定理を解説します。
この動画を見る 

福田のわかった数学〜高校1年生057〜図形の計量(8)正四面体の内接球の半径

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 図形の計量(8)\\
1辺の長さがaの正四面体の各面に接する内接球の半径を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第4問〜折り紙を折ってできる線分、角、面積を求める

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 一辺の長さが2の正方形の折り紙 ABCD を次の手順にしたがって折る。\\
(1) A と B、DとCを合わせて ADがBCに重なるように谷折りし、折り目をつけて\\
開く。AB および DC 上にあるこの谷折り線の端点をそれぞれEおよびFとする。\\
(2 ) AF が谷折り線になるよう に谷折りし、折り目をつけて開く。\\
(3) A を谷折り線の端点の1つとして、AB がAF 上に重なるように谷折りし、折り\\
目をつけて開く。BC上にあるこの谷折り線のもう1つの端点をGとする。\\
(4) D と A、CとBを合わせてDCがABに重なるように谷折りして、折り目をつけ\\
る。AD およびBC 上にあるこの谷折り線の端点をそれぞれHおよびIとする。\\
(5) C と B がいずれもGと重なるように2枚重ねて谷折りし、CIおよびBI 上に折り\\
目をつけて開く。この折り目の点をそれぞれ」およびKとする (A, E, B, K は\\
それぞれ D, F, C, J と重なっているため図中には表示していない)\\
(6) HI を谷折り線とする谷折りを開く (A, E, B, KはそれぞれD, F, C, J と重なって\\
いるため図中には表示していない)\\
(7) K を谷折り線の端点の1つとして、JがAB上に重なるように谷折りし、折り目\\
をつける。AD上にあるこの谷折り線のもう1つの端点をしとし、AB上にある\\
Jが重なる点をMとする。\\
(8)KLを谷折り戦とする谷折りを開く(MはJと重なっているため表示していない)\\
(9)Mを谷折り線の端点の1つとして、AとDがそれぞれBEとCF上にくるように\\
谷折りし、折り目をつけて開く。DC上にあるこの谷折り線のもう1つ端点を\\
Nとする。\\
(10)折るのをやめる。\\
\\
このとき、BG=\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }},JK=\boxed{\ \ オカ\ \ }+\sqrt{\boxed{\ \ キク\ \ }},JM=\boxed{\ \ ケコ\ \ },\\
\\
\cos\angle JKM=\frac{\boxed{\ \ サシ\ \ }+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }}\\
\\
ここで、\triangle JKMの面積をS_1,\triangle JMNの面積をS_2とすると\\
\\
\frac{S_2}{S_1}=\frac{\boxed{\ \ テト\ \ }+\sqrt{\boxed{\ \ ナニ\ \ }}}{\boxed{\ \ ヌネ\ \ }}\\
\\
となる。\\
※(1)~(10)の画像は動画参照
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

「正弦定理・余弦定理・面積公式」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正弦定理・余弦定理・面積公式の解説動画です
この動画を見る 

角の二等分線と面積比

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABD:△ACD=?
*図は動画内参照
この動画を見る 
PAGE TOP