福田の数学〜九州大学2024年文系第2問〜ベクトルの内積計算と三角形の面積 - 質問解決D.B.(データベース)

福田の数学〜九州大学2024年文系第2問〜ベクトルの内積計算と三角形の面積

問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の原点O(0,0)、点A(2,1)を考える。点Bは第1象限にあり、|$\overrightarrow{OB}$|=$\sqrt{10}$, $\overrightarrow{OA}\bot\overrightarrow{AB}$を満たすとする。以下の問いに答えよ。
(1)点Bの座標を求めよ。
(2)$s$,$t$を正の実数とし、$\overrightarrow{OC}$=$s\overrightarrow{OA}$+$t\overrightarrow{OB}$ を満たす点Cを考える。三角形OACと三角形OBCの面積が等しく、|$\overrightarrow{OC}$|=4 が成り立つとき、$s$,$t$の値を求めよ。
単元: #大学入試過去問(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の原点O(0,0)、点A(2,1)を考える。点Bは第1象限にあり、|$\overrightarrow{OB}$|=$\sqrt{10}$, $\overrightarrow{OA}\bot\overrightarrow{AB}$を満たすとする。以下の問いに答えよ。
(1)点Bの座標を求めよ。
(2)$s$,$t$を正の実数とし、$\overrightarrow{OC}$=$s\overrightarrow{OA}$+$t\overrightarrow{OB}$ を満たす点Cを考える。三角形OACと三角形OBCの面積が等しく、|$\overrightarrow{OC}$|=4 が成り立つとき、$s$,$t$の値を求めよ。
投稿日:2024.06.20

<関連動画>

防衛医大 ピタゴラス数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#防衛医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
防衛医科大学校過去問題
$a^2+b^2+c^2$ a,b,c自然数
a,b,cのいずれかは5の倍数であることを示せ。

*旭川医科大学
(1)c奇数
(2)a,b1つは3の倍数
(3)a,b1つは4の倍数
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第4問〜カテナリーと円の相接

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 曲線y=\frac{e^x+e^{-x}}{2} (x \gt 0)をCで表す。Q(X,Y)を中心とする半径rの円が曲線C\\
と、点P(t,\frac{e^t+e^{-t}}{2})\ (ただしt \gt 0)において共通の接線をもち、さらにX \lt tであるとする。\\
このときXおよびYをtの式で表すと\\
X=\boxed{\ \ (あ)\ \ }, Y=\boxed{\ \ (い)\ \ }\\
となる。tの関数X(t),Y(t)をX(t)=\boxed{\ \ (あ)\ \ },Y(t)=\boxed{\ \ (い)\ \ }により定義する。全て\\
のt \gt 0に対してX(t) \gt 0となるための条件は、rが不等式\boxed{\ \ (う)\ \ }を満たすことで\\
ある。\boxed{\ \ (う)\ \ }が成り立たないとき、関数Y(t)はt=\boxed{\ \ (え)\ \ }において最小値\boxed{\ \ (お)\ \ }\\
をとる。また\boxed{\ \ (う)\ \ }が成り立つとき、YをXの関数と考えて、(\frac{dY}{dX})^2+1をYの式で\\
表すと(\frac{dY}{dX})^2+1=\boxed{\ \ (か)\ \ } となる。\\
\end{eqnarray}

2021慶應義塾大学医学部過去問
この動画を見る 

東京海洋大学 三角関数 最大最小 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#東京海洋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京海洋大学過去問題
$y=2\cos^3x+2\sin^3x+3 \cos x \sin x-3$
$\cos x-3 \sin x$
$0 \leqq x \leqq 2π$のときのyの最大値、最小値およびその時のxの値
この動画を見る 

信州大 4次関数に2点で接する直線 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#数学(高校生)#信州大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
信州大学過去問題
$y=x^4-x^2+x$に相異なる2点で接する直線の方程式を求めよ。
この動画を見る 

【理数個別の過去問解説】2011年度東京大学 数学 文系理系第1問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積$S(a)$を求めよ。
(2) aが$0<a<1$の範囲を動くとき、$S(a)$が最大となるaを求めよ。
この動画を見る 
PAGE TOP