ただの三次方程式 - 質問解決D.B.(データベース)

ただの三次方程式

問題文全文(内容文):
これを解け.
$(x-1)^3+(2x+3)^3=27x^3+8$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x-1)^3+(2x+3)^3=27x^3+8$
投稿日:2021.11.01

<関連動画>

福田の数学〜東京慈恵会医科大学2025医学部第3問〜双曲線が表す領域と素数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#平面上の曲線#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

自然数$p$は$2$以上の定数とする。

$xy$平面上で不等式$x^2-py^2 \geqq -1$の表す領域

を$D$とする。

自然数$r$は、円$(x-p)^2+y^2=r$が領域$D$に

含まれるような最大のものとするとき、

次の問いに答えよ。

(1)$r$を$p$を用いて表せ。

(2) (1)のもとで、関係式$(x-p)^2+y^2=r$をみたす

互いに異なる素数の組$(x,y,p)$のうち、

$p$の値が最小となるものを求めよ。

$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る 

条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
本当のことを言う確率が80%の人が3人いる。
1枚の硬貨を投げたところ、三人とも表が出たと証言した。
本当に表が出た確率を求めよ。
この動画を見る 

福田のおもしろ数学421〜2つの条件を満たす素数p,qを求める

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$q^2-4$が$p$で割り切れ

$p^2-1$が$q$で割り切れる

ような素数$p,q$は?
   
この動画を見る 

【高校数学】組合わせ~順列との違いを明確に~ 1-10【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
組合わせ 順列との違いについての説明した動画です
この動画を見る 

でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の整数m,nが不等式
$\sqrt n \leqq \frac{m}{2} < \sqrt{n+1}$をみたす。以下を示す。
(1)$m^2-4n=0 or 1$
(2)$m < \sqrt n+ \sqrt m < m+1$
この動画を見る 
PAGE TOP