問題文全文(内容文):
図のように、円Oの外部に点Pがあり、Pから円Oに接線PA、PBを引く。また、Pを通り、円Oと2点C、Dで交わる直線を引く。ただし、直線CDは円の中心を通らないものとする。このとき、線分ABの中点をMとすると、4点C、M、O、Dは1つの円周上にあることを証明しなさい。
図のように、円Oの外部に点Pがあり、Pから円Oに接線PA、PBを引く。また、Pを通り、円Oと2点C、Dで交わる直線を引く。ただし、直線CDは円の中心を通らないものとする。このとき、線分ABの中点をMとすると、4点C、M、O、Dは1つの円周上にあることを証明しなさい。
チャプター:
0:00 オープニング
0:05 問題文
0:29 アプローチ
2:47 証明
6:20 エンディング
単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように、円Oの外部に点Pがあり、Pから円Oに接線PA、PBを引く。また、Pを通り、円Oと2点C、Dで交わる直線を引く。ただし、直線CDは円の中心を通らないものとする。このとき、線分ABの中点をMとすると、4点C、M、O、Dは1つの円周上にあることを証明しなさい。
図のように、円Oの外部に点Pがあり、Pから円Oに接線PA、PBを引く。また、Pを通り、円Oと2点C、Dで交わる直線を引く。ただし、直線CDは円の中心を通らないものとする。このとき、線分ABの中点をMとすると、4点C、M、O、Dは1つの円周上にあることを証明しなさい。
投稿日:2023.11.27