【高校数学】2次関数~どこよりも易しく~ 2-1【数学Ⅰ】 - 質問解決D.B.(データベース)

【高校数学】2次関数~どこよりも易しく~ 2-1【数学Ⅰ】

問題文全文(内容文):
2次関数説明動画です
チャプター:

00:00 はじまり

00:41 言葉の説明

02:21 f(x)の使い方

05:15 言葉の説明

08:24 基礎例題

09:50 あたいいき派の説明

10:25 まとめ

10:50 まとめノート

単元: #数Ⅰ#2次関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次関数説明動画です
投稿日:2020.09.16

<関連動画>

#関西学院大学2011#方程式_69

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$(x+1)(x-2)(x+3)(x-4)=-24$を解け.

2011関西学院大学過去問題
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第5問〜データの分析、平均と分散

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

(1)$20$人の生徒に、$5$点満点の小テストを行った。

次の度数分布表は全員のテストの得点である。

この小テストの得点の平均値は$\boxed{ハ}$、

分散は$\boxed{ヒ}$である。

また、生徒のうちの$1$名の得点が$\boxed{フ}$点から

$\boxed{ヘ}$点に変更された場合、

生徒全員の得点の平均値は$3$、分散は$2$となる。

(2)確率変数$X$と$Y$は独立であり、$X$の平均が$m_x$、

分散が$\upsilon_x$であるとする。

また、$a,b$は定数とする。このとき、$aX+bY$の

平均は$\boxed{ホ}$、分散は$\boxed{マ}$である。

(3)確率変数$X_1,X_2,\cdots,X_n,X_{n+1}$は互いに

独立であり、

$T_n=\dfrac{1}{n}(X_1+X_2+\cdots + X_n)$

の平均が$m$、分散が$\upsilon$であるとする。

$X_{n+1}$の平均が$m'$、分散が$\upsilon'$であるとき、

$T_{n+1}=\dfrac{1}{n+1}(X_1+X_2+\cdots +X_n+X_{n+1})$

の平均は$\boxed{ミ}$、分散は$\boxed{ム}$である。

図は動画内参照

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

福田の数学〜三角比の基本の復習にどうぞ〜慶應義塾大学2023年経済学部第1問(1)〜三角形と外接円内接円の半径

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)$\triangle ABC$において
$sinA:sinB:sinC=3:7:8$
が成り立つとき、ある性の実数kを用いて
$a=\fbox{ア}k,b=\fbox{イ}k,c=\fbox{ウ}k$
と表すことができるので、この三角形の最も大きい角の余弦の値は$-\dfrac{\fbox{エ}}{\fbox{オ}}$であり、正弦の値は$-\fbox{カ}\sqrt{\fbox{キ}}$である。さらに$\triangle ABC$の面積が$54\sqrt{3}$であるとき、$k=\fbox{ク}$となるので、この三角形の外接円の半径は$\fbox{ケ}\sqrt{\fbox{コ}}$であり、内接円の半径は$\fbox{サ}\sqrt{\fbox{シ}}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 

【数Ⅰ】【2次関数】放物線 y=x² と直線 y=-2x+k の共有点の個数は定数k の値によりどのように変化するか。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 y=x² と直線 y=-2x+k の共有点の個数は定数k の値によりどのように変化するか。
この動画を見る 

数学を数楽に

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$499^2+499+500=$
この動画を見る 
PAGE TOP