高1数学の展開 - 質問解決D.B.(データベース)

高1数学の展開

問題文全文(内容文):
$a+b+c=1$
$a^2+b^2+c^2=13$
$(a-b)^2 + (b-c)^2 + (c-a)^2 = ?$

共通テスト
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a+b+c=1$
$a^2+b^2+c^2=13$
$(a-b)^2 + (b-c)^2 + (c-a)^2 = ?$

共通テスト
投稿日:2023.03.26

<関連動画>

【#8】【因数分解100問】基礎から応用まで!(71)〜(80)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(76)$(2x-3y+1)(3x+2y-1)$
(77)$(3x-4y)^2$
(78)$(x-y-1)(x^2+y^2+1+xy+x-y)$
(79)$(x^2+4x+6)(x^2+8x+6)$
(80)$-3(2x-1)(x-3)(x+2)$
この動画を見る 

東大数学科院生わくたさん登場

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
0でない実数x,y,zについて,
$x^2y^2+y^2z^2+z^2x^2=xyz(x+y+z)$が成り立つとき,
$x=y=z$を示せ.
この動画を見る 

マイナス乗とは?2分の1乗とは?基本から丁寧に解説

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\frac{2}{3})^{-\frac{3}{2}}$
この動画を見る 

🌈🌈🌈

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
緑と青と赤の面積は等しい
AQ=?
*図は動画内参照
この動画を見る 

福田の数学〜東京大学2023年理系第4問〜球面と三角形が共有点をもつ条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#空間ベクトル#集合と命題(集合・命題と条件・背理法)#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標空間内の4点O(0,0,0), A(2,0,0), B(1,1,1), C(1,2,3)を考える。
(1)$\overrightarrow{OP}\bot\overrightarrow{OA}$, $\overrightarrow{OP}\bot\overrightarrow{OB}$, $\overrightarrow{OP}\bot\overrightarrow{OC}$=1 を満たす点Pの座標を求めよ。
(2)点Pから直線ABに垂線を下ろし、その垂線と直線ABの交点をHとする。
$\overrightarrow{OH}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
(3)点Qを$\overrightarrow{OQ}$=$\frac{3}{4}\overrightarrow{OA}$+$\overrightarrow{OP}$により定め、Qを中心とする半径rの球面Sを考える。Sが三角形OHBと共有点を持つようなrの範囲を求めよ。ただし、三角形OHBは3点O, H, Bを含む平面内にあり、周とその内部からなるものとする。

2023東京大学理系過去問
この動画を見る 
PAGE TOP