大学入試問題#808「難しすぎない良問」 #東京医科大学(2009) #整数問題 - 質問解決D.B.(データベース)

大学入試問題#808「難しすぎない良問」 #東京医科大学(2009) #整数問題

問題文全文(内容文):
不等式$\sqrt{ n+1 }-\sqrt{ n } \gt \displaystyle \frac{1}{100}$を満たす正の整数$n$の最大値を求めよ。

出典:2009年東京医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学
指導講師: ますただ
問題文全文(内容文):
不等式$\sqrt{ n+1 }-\sqrt{ n } \gt \displaystyle \frac{1}{100}$を満たす正の整数$n$の最大値を求めよ。

出典:2009年東京医科大学 入試問題
投稿日:2024.05.03

<関連動画>

【理数個別の過去問解説】2020年度横浜国立大学 数学 第4問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問4(2)
xyz空間に、2点A(1,2,9)、B(-3,6,7)を通る直線lがある。また、l上の点P、Qと、x軸上の点R、Sは
直線$PR⊥xy$平面、直線$QS⊥x$軸、直線$QS⊥l$
を満たす。次の問いに答えよ。
(1)P、Rの座標を求めよ。
(2)Q、Sの座標を求めよ。
(3)線分PQをx軸のまわりに1回転してできる局面と、Pを含みx軸に垂直な平面と、Qを含みx軸に垂直な平面で囲まれた立体の体積を求めよ。
この動画を見る 

大学入試問題#191 岡山県立大学(2013) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}}\displaystyle \frac{log(\cos\ x)}{\cos^2x}\ dx$

出典:2013年岡山県立大学 入試問題
この動画を見る 

三角関数の重要ポイントが詰まった問題【数学 入試問題】【奈良県立医大】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$0<\theta<\pi,\theta \neq \dfrac{\pi}{2}$のとき、
$ tan\theta-\dfrac{1}{tan\theta}=\dfrac{1}{sin\theta}-\dfrac{1}{cos\theta}$を満たす$\theta$の値を求めよ。

奈良県立医大過去問
この動画を見る 

福田の数学〜2直線のなす角はtanの加法定理〜慶應義塾大学2023年商学部第2問〜2直線のなす角と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a \gt 0,b \lt 0$とする。放物線C:$y=\dfrac{3}{2}x^2$上の点A(a,$\dfrac{3}{2}a^2$)と点B(b,$\dfrac{3}{2}b^2$)について、点Aと点Bにおける放物線の接線をそれぞれlとmで表し、その好転をPとする。
(1)lとmが直交するとき、交点Pのy座標は$-\dfrac{\fbox{ア}}{\fbox{イ}}$である。
(2)a=2で、$\angle APB=\dfrac{\pi}{4}$とする。このとき、bの値は$-\dfrac{\fbox{ウ}}{\fbox{エオ}}$である。
(3)b=-aで、$\angle APB=\dfrac{\pi}{3}$とする。この時、aの値は$\dfrac{\sqrt{\fbox{カ}}}{\fbox{キ}}$である。また、PAを半径、$\angle APB$を中心角として扇形PABが定まる。この扇形は放物線Cによって2つの図形に分割され、大きい図形の面積と小さい図形の面積の差は$\dfrac{\fbox{ク}}{\fbox{ケ}}\pi-\dfrac{\fbox{コ}\sqrt{\fbox{サ}}}{\fbox{シ}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 

大学入試問題#832「これは落としたくない」 #岩手大学(2011) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: ますただ
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{6}{t^2+7t+10} dt$について$\displaystyle \lim_{ x \to \infty } f(x)$を求めよ。

出典:2011年岩手大学
この動画を見る 
PAGE TOP