岡山大 複素数 - 質問解決D.B.(データベース)

岡山大 複素数

問題文全文(内容文):
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$

$(w+2)^n+(w^2+2)^n$が整数であることを示せ$(n$自然数$)$

出典:岡山大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師:
問題文全文(内容文):
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$

$(w+2)^n+(w^2+2)^n$が整数であることを示せ$(n$自然数$)$

出典:岡山大学 過去問
投稿日:2019.11.05

<関連動画>

【高校数学】 数Ⅱ-25 複素数③

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の複素数と共役な複素数を書こう。

①$-7-2i$

②$2+9i$

③$3i$

④$-6$

◎次の式を計算して、$a+bi$(a,bは実数)の形にしよう。

⑤$\displaystyle \frac{7+i}{1+3i}$

⑥$\displaystyle \frac{2+3i}{2+i}$

⑦$\displaystyle \frac{2i}{3-i}$
この動画を見る 

俺のアイデアを聞いて

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2+x+1=$の1つの解を$\omega$とする.
$1+2\omega+3\omega^2+4\omega^3+…+100\omega^{99}=a\omega+b$である.a.bの値を求めよ.
この動画を見る 

日本医科大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\displaystyle \frac{\pi}{7}$ $z=\cos\theta+i \sin\theta$

(1)
$\cos\theta,\cos2\theta,\cos3\theta$を$z$で表せ

(2)
$\cos\theta・\cos2\theta・\cos3\theta$

(3)
$\cos\theta+\cos3\theta+\cos5\theta$の値を求めよ

出典:日本医科大学 過去問
この動画を見る 

ハルハル様の作成問題③ #複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$z$:複素数
$a$:実数
$2Z^2+3|Z|Z=a$を解け
この動画を見る 

複素関数論⑩ 高専数学 複素積分*ex2, *2

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$C_{\alpha}:Z=\alpha+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C\alpha}^{} \ \dfrac{1}{(Z-\alpha)^n}\ \alpha_Z$

(2) $C_{\alpha}:Z=1+re^{it} \ (0\leqq t\leqq 2\pi)$
$ \displaystyle \int_{C}^{} \ \dfrac{2}{Z-1}\ \alpha_Z$
この動画を見る 
PAGE TOP