岡山大 複素数 - 質問解決D.B.(データベース)

岡山大 複素数

問題文全文(内容文):
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$

$(w+2)^n+(w^2+2)^n$が整数であることを示せ$(n$自然数$)$

出典:岡山大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師:
問題文全文(内容文):
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$

$(w+2)^n+(w^2+2)^n$が整数であることを示せ$(n$自然数$)$

出典:岡山大学 過去問
投稿日:2019.11.05

<関連動画>

これなんで? フルは↑

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
これなんで? フルは↑
【問題文】20×20
この動画を見る 

4次方程式の解でできた式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^4-x^3-x^2-x+3=0$の4つの解を$\alpha,\beta,\delta,\zeta$とする.
$(\alpha^3-1)(\beta^3-1)(\delta^3-1)(\zeta^3-1)$の値を求めよ.
この動画を見る 

近畿大 茨城大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数C#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$x^4-Px^2+P^2-P-2=0$が相異4実根をもつPの範囲

茨城大学過去問題
$x^3=i$を解け
この動画を見る 

虚数係数の二次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1-i)x^2+(3k-6i)x+8-5ki+2i=0$が実数解をもつような整数kとそのときの解を求めよ.

愛知大過去問
この動画を見る 

数学オリンピック予選

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#解と判別式・解と係数の関係#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
有理数係数の2次方程式
$ x^{2n}+a_1x^{2n-1}+a_2x^{2n-2}+$
$・・・・・・+a_{2n-1}x+a_{2n}=0$
の解はすべて$x^2+5x+7=0$の解にもなっている.
$a_1$の値を求めよ.
この動画を見る 
PAGE TOP