ただの2次方程式⁉️ just a quadratic equation⁉️ - 質問解決D.B.(データベース)

ただの2次方程式⁉️ just a quadratic equation⁉️

問題文全文(内容文):
$ (7x+1)(9x+1)=61$
これを解け.
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ (7x+1)(9x+1)=61$
これを解け.
投稿日:2022.11.13

<関連動画>

【高校数学】集合の基礎例題2題~苦手な人は一緒に解こう~ 1-3.5【数学A】

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から12までの自然数全体の集合を全体集合とし、2の倍数全体の集合をA、
3の倍数全体の集合をBとする。

このとき、次の集合を求めよ。
U={1,2,3,4,5,6,7,8,9,10,11,12}, A={2,4,6,8,10,12}, B={3,6,9,12}

(1)$A \cap B$={6,12}

(2)$A \cup B$={2,3,4,6,8,9,10,12}

(3)$\overline{ A }$={1,3,5,7,9,11}

(4)$\overline{ B }$={1,2,4,5,7,8,10,11}

(5)$\overline{ A }$$\cap$$\overline{ B }$={1,5,7,11}

(6)$\overline{ A }$$\cap B$={3,9}

(7)$A \cup$$\overline{ B }$={1,2,4,5,6,7,8,10,11,12}

(8)$\overline{ A \cup B }$={1,5,7,11}

-----------------

全体集合$ U $={1,2,3,4,5,6,7,8,9}の部分集合$ A,B $について、
$\overline{ A } \cap \overline{ B }$={1,4,8}, $\overline{ A } \cap B $={6,9}, $ A \cap \overline{ B } $={2,5,7}のとき、次の集合を求めよ。

(1)$A \cup B$={2,3,5,6,7,9}

(2)$A$={2,3,5,7}

(3)$B$={3,6,9}
この動画を見る 

【高校数学】三角比4.5~例題・三角比といえばこれ・基礎~ 3-4.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 0°≦$\theta$≦180°のとき、sin$\theta$=$\frac{ \sqrt{3} }{ 2 }$を満たす$\theta$を求めよ。

(2) 0°≦$\theta$≦180°のとき、cos$\theta$=-$\frac{ 1 }{ \sqrt{2} }$を満たす$\theta$を求めよ。

(3) 0°≦$\theta$≦180°のとき、tan$\theta$=-$\sqrt{3}$を満たす$\theta$を求めよ。

(4) 0°≦$\theta$≦180°のとする。sin$\theta$=$\displaystyle \frac{3}{5}$のとき、cos$\theta$とtan$\theta$の値を求めよ。

(5) 直線y=$\sqrt{3}$xとx軸の正の向きとのなす角$\theta$を求めよ。
この動画を見る 

2021年藤田医科大

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$は実数である.
$\left(\dfrac{2+\sqrt{-77}}{9}\right)^{2021}=\dfrac{x+y\sqrt{-77}}{9}$
$x^2+77y^2$の値を求めよ.

2021藤田医科大過去問
この動画を見る 

16京都府教員採用試験(数学:2番 背理法)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣ $\log_{ 2 } 3$は無理数を示せ。
この動画を見る 

【わかりやすく】集合の「倍数の個数」の求め方(数学A)

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
100から300までの自然数のうち、次のような数の個数を求めよ。
(1)5の倍数
(2)7の倍数
(3)5の倍数または7の倍数
(4)5の倍数であるが、7の倍数ではない数
(5)5の倍数でも7の倍数でもない数
この動画を見る 
PAGE TOP