色々解き方あると思いますが僕はこう解きました 2次方程式と比 専修大学松戸 2022入試問題解説16問目 - 質問解決D.B.(データベース)

色々解き方あると思いますが僕はこう解きました 2次方程式と比 専修大学松戸 2022入試問題解説16問目

問題文全文(内容文):
2次方程式
$ax^2-2ax-b=0$
1つの解が$x=1+ \sqrt {10}$
a:b=?

2022専修大学松戸高等学校
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
2次方程式
$ax^2-2ax-b=0$
1つの解が$x=1+ \sqrt {10}$
a:b=?

2022専修大学松戸高等学校
投稿日:2022.01.23

<関連動画>

【まず手を付けよう…!】二次方程式:法政大学第二高等学校~全国入試問題解法

アイキャッチ画像
単元: #中3数学#2次方程式#高校入試過去問(数学)#法政大学第二高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式$ (x+2)^2+x^2=(x+4)^2-12 $を解きなさい.

法政大学第二高等学校過去問
この動画を見る 

賀県立高校入試2021年4⃣(1)~(4)「二次関数、一次関数」

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
賀県立高校入試2021年4⃣(1)~(4)「二次関数、一次関数」
-----------------
動画内の図のように、関数$y=ax^2$のグラフ上に3点A、B、Cがある。
点Aの座標はA(2.2)、点Bの$x$座標は-6、点Cの$x$座標は4である。
(1)aの値を求めなさい。
(2)点Cの$y$座標を求めなさい。
(3)2点B、Cを通る直線の切片を求めなさい。
(4)点Aを通り△ABCの面積を2等分する直線と、2点B、Cを通る直線との交点の座標を求めなさい。
この動画を見る 

【見方を変えて!】文字式:法政大学第二高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#法政大学第二高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x+y=-1,xy=-\dfrac{3}{5}$のとき,
$ x^2-3xy+y^2 $の値を求めなさい.

法政大第二高校過去問
この動画を見る 

【高校受験対策/数学】死守59

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#空間図形#確率#文字と式#平面図形#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策/数学 死守59

①$-5 \times 3$を計算しなさい。

②$9-6^2$を計算しなさい。

③$\sqrt{14}\times\sqrt{7}-\sqrt{8}$を計算しなさい。

④$x=1$、$y=-2$のとき、$3x(x+2y)+y(x+2y)$の値を求めなさい。

⑤絶対値が$4$である数をすべて書きなさい。

⑥$y$は$x$に比例し、$x=2$のとき$y=-6$となります。
$x=-3$のとき $y$の値を求めなさい。

⑦右の図のように、2種類のマーク(♥、◆)のカードが4枚あります。
この4枚のカードのうち、3枚のカードを1枚ずつ左から右に並べるとき、
異なるマークのカードが交互になる並べ方は何通りあるか求めなさい。

⑧右の図のような正三角錐OABCがあります。
辺ABとねじれの位置にある辺はどれですか、書きなさい。

⑨右の資料は、A市における各日の最高気温を1週間記録したものです。 中央値を求めなさい。

➉右の図のような$△ABC$があります。AC上に点Pを、$\angle PBC=30°$となるようにとります。
点Pを定規とコンパス を使って作図しなさい。
ただし点を示す記号Pをかき入れ、作図に用いた線 は消さないこと。
この動画を見る 

【3分で不等式が好きになる!】不等式:法政大学第二高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#方程式#平方根#高校入試過去問(数学)#法政大学第二高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 法政大学第二高等学校

【不等式】
$\displaystyle \frac{1}{\sqrt{ n+1 }} \gt \displaystyle \frac{1}{7}$
を満たす正の整数$n$のうち
最も大きいものを答えなさい。
この動画を見る 
PAGE TOP