福田の数学〜東京大学2025文系第4問〜放物線で囲まれた面積の最大値 - 質問解決D.B.(データベース)

福田の数学〜東京大学2025文系第4問〜放物線で囲まれた面積の最大値

問題文全文(内容文):

$\boxed{4}$

$a$は実数とする。

座標平面において、次の連立不等式の表す領域の

面積を$S(a)$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
y \leqq -\dfrac{1}{2}x^2+2 \\
y \geqq \vert x^2+a \vert \\\
-1 \leqq x \leqq 1
\end{array}
\right.
\end{eqnarray}$

$a$が$ 2\leqq a \leqq 2$の範囲を動くとき、

$S(a)$の最大値を求めよ。

$2025$年東京大学文系過去問
単元: #連立方程式#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$a$は実数とする。

座標平面において、次の連立不等式の表す領域の

面積を$S(a)$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
y \leqq -\dfrac{1}{2}x^2+2 \\
y \geqq \vert x^2+a \vert \\\
-1 \leqq x \leqq 1
\end{array}
\right.
\end{eqnarray}$

$a$が$ 2\leqq a \leqq 2$の範囲を動くとき、

$S(a)$の最大値を求めよ。

$2025$年東京大学文系過去問
投稿日:2025.03.06

<関連動画>

数学を軽い気持ちで臨む!~全国入試問題解法 #数学 #高校入試 #勉強 #点数 #ライブ

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
数学を軽い気持ちで臨む!

$\begin{eqnarray}
\left\{
\begin{array}{l}
xy + x + 2y= 6 \\
2xy + x-y = 5
\end{array}
\right.
\end{eqnarray}$
を解け。

この動画を見る 

【テスト対策・中2】2章-2

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
ax+by=-11 \\
bx-ay=13
\end{array}
\right.
\end{eqnarray}$の解が$x=3,y=-1$であるとき,
$a,b$の値を求めなさい.

②連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+4y=2 \\
ax+by=1
\end{array}
\right.
\end{eqnarray}$の解の$x$と$y$を入れかえると,
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=-1 \\
ax-by=1
\end{array}
\right.
\end{eqnarray}$の解になる.
このとき,定数$a,b$の値を求めなさい.
この動画を見る 

【ケイスウに小数、分数…!】連立方程式:八雲学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の連立方程式を解きなさい。

0.3x + y/2 =1.7
-x + (4x-y)/3 =1
この動画を見る 

【中学数学】連立方程式割合の問題演習~2種類の解き方を教えます~ 2-3.5【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ある中学校の昨年の全校生徒数は男女合わせて220人でした。
今年は昨年と比べ、男子が5%増え、女子が2%減ったため、全体では4人増えました。
今年の男子と女子の人数をそれぞれ求めよ。
この動画を見る 

式の値 ラ・サール 2023

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x = \sqrt 7 + \sqrt 2 \\
y = \sqrt 7 - \sqrt 2
\end{array}
\right.
\end{eqnarray}

$x^4 - 6x^2y^2 +y^4 = ?$

2023ラ・サール学園
この動画を見る 
PAGE TOP