ハルハルさんの積分問題(1) 「大技の連打」 #定積分 - 質問解決D.B.(データベース)

ハルハルさんの積分問題(1) 「大技の連打」 #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x}{\sin\ x+\cos\ x+0.2} dx$
チャプター:

00:00 問題紹介
00:11 本編スタート
07:52 作成した解答①
08:01 作成した解答②
08:11 エンディング(楽曲提供:兄いえてぃさん)

単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x}{\sin\ x+\cos\ x+0.2} dx$
投稿日:2022.12.23

<関連動画>

練習問題43 区分求積法 数検1級1次 教員採用試験

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\sqrt[ n ]{ {}_{ 2n } P_n }$の極限値を求めよ。

$\displaystyle \int_{0}^{1}f(x)dx=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f(\displaystyle \frac{k}{n})$
この動画を見る 

大学入試問題#399「なんだこりゃ!」 東京商船大学 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \sin(\pi\ \cos\ x) dx$

出典:東京商船大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題092〜神戸大学2018年度理系第5問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 座標空間において、Oを原点とし、A(2,0,0), B(0,2,0), C(1,1,0)とする。$\triangle$OABを直線OCの周りに1回転してできる回転体をLとする。
(1)直線OC上にない点P(x,y,z)から直線OCにおろした垂線をPHとする。
$\overrightarrow{OH}$と$\overrightarrow{HP}$をx,y,zの式で表せ。
(2)点P(x,y,z)がLの点であるための条件は
$z^2≦2xy$ かつ $0≦x+y≦2$
であることを示せ。
(3)$1≦a≦2$とする。Lを平面x=aで切った切り口の面積S(a)を求めよ。
(4)立体${(x,y,z)|(x,y,z)\in L, 1≦x≦2}$の体積を求めよ。

2018神戸大学理系過去問
この動画を見る 

大学入試問題#8 東京理科大学(2021) 定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の定積分を計算せよ。

$I_0=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x-\sqrt{ 2 }\ \cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_1=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_2=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

出典:2021年東京理科大学 入試問題
この動画を見る 

高校の範囲で解ける積分 By 英語orドイツ語シはBかHか さん #定積分

アイキャッチ画像
単元: #複素数平面#積分とその応用#複素数平面#定積分#数学(高校生)#数C#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} arg(1+\sqrt{ -x }) dx$
$-\pi \leqq arg(1+\sqrt{ -x }) \lt \pi$
この動画を見る 
PAGE TOP