大学入試問題#842「公式は使っていません」 #電気通信大学(2018) #定積分 - 質問解決D.B.(データベース)

大学入試問題#842「公式は使っていません」 #電気通信大学(2018) #定積分

問題文全文(内容文):
$\displaystyle \int_{-1}^{1} (1+x)^4(1-x)^2 dx$

出典:2018年電気通信大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} (1+x)^4(1-x)^2 dx$

出典:2018年電気通信大学 入試問題
投稿日:2024.06.07

<関連動画>

藤田医科大 ドモアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+i)^n=(1-i)n$をみたす2023以下の自然数nの個数を答えよ.

2023藤田医科大過去問
この動画を見る 

北海道大 対数 不等式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$f(t)=log_{2}t+log_{t}4$の最小値は?

(2)
$k$ $log_{2}t \lt (log_{2}t)^2-log_{2}t+2$が成り立つ$k$の範囲は?

出典:北海道大学 過去問
この動画を見る 

福田の数学〜千葉大学2024年理系第7問〜3次方程式の解の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$ を正の整数とする。 $x$ の関数 $f(x) $$= x^3$$-2nx^2$$+(2n-3)x$$+1$ について、以下の問いに答えよ。
$(1)$ $\alpha$ を $f(x)=0$ の$1$ つの解とする。 $\displaystyle f(\frac{1}{1-\alpha})$ の値を求めよ。
$(2)$ 方程式 $f(x) = 0$ は異なる $3$ つの実数解をもつことを示せ。
$(3)$ 方程式 $f(x) = 0$ の解で $2$ 番目に大きいものを $\beta_n$ とする。極限 $\displaystyle \lim_{ n \to \infty } \beta_n$ を求めよ。
この動画を見る 

大学入試問題#461「どう処理すべきか」 関西大学(2009) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{-2x}}{1+e^{-x}} dx$

出典:2009年関西大学 入試問題
この動画を見る 

大学入試問題#693「部分分数分解ばかり」 久留米大学医学部(2010)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{4}^{5} \displaystyle \frac{3x-7}{x^3-6x^2+11x-6} dx$

出典:2010年久留米大学医学部 入試問題
この動画を見る 
PAGE TOP