福田の数学・入試問題解説〜東北大学2022年文系第4問〜空間における四面体の高さと体積 - 質問解決D.B.(データベース)

福田の数学・入試問題解説〜東北大学2022年文系第4問〜空間における四面体の高さと体積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ xyz空間内の点O(0,0,0),A(1,\sqrt2,\sqrt3),B(-\sqrt3,0,1),C(\sqrt6,-\sqrt3,\sqrt2)\\
を頂点とする四面体OABCを考える。3点OABを含む平面からの距離が1の点\\
のうち、点Oに最も近く、x座標が正のものをHとする。\\
(1)Hの座標を求めよ。\\
(2)3点OABを含む平面と点Cの距離を求めよ。\\
(3)四面体OABCの体積を求めよ。
\end{eqnarray}

2022東北大学文系過去問
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ xyz空間内の点O(0,0,0),A(1,\sqrt2,\sqrt3),B(-\sqrt3,0,1),C(\sqrt6,-\sqrt3,\sqrt2)\\
を頂点とする四面体OABCを考える。3点OABを含む平面からの距離が1の点\\
のうち、点Oに最も近く、x座標が正のものをHとする。\\
(1)Hの座標を求めよ。\\
(2)3点OABを含む平面と点Cの距離を求めよ。\\
(3)四面体OABCの体積を求めよ。
\end{eqnarray}

2022東北大学文系過去問
投稿日:2022.04.09

<関連動画>

福田の数学〜九州大学2022年文系第2問〜点と平面の距離と対称点

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 座標空間内の4点\\
O(0,0,0),A(1,1,0),B(2,1,2),P(4,0,-1)\\
を考える。3点O,A,Bを通る平面を\alphaとし、\overrightarrow{ a }=\overrightarrow{ OA },
\overrightarrow{ b }=\overrightarrow{ OB }とおく。\\
以下の問いに答えよ。\\
(1)ベクトル\overrightarrow{ a },\ \overrightarrow{ b }の両方に垂直であり、x成分が正であるような、大きさが1\\
のベクトル\overrightarrow{ n }を求めよ。\\
(2)点Pから平面\alphaに垂線を下ろし、その交点をQとおく。\\
線分PQの長さを求めよ。\\
(3)平面\alphaに関して点Pと対称な点P'の座標を求めよ。
\end{eqnarray}

2022九州大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第5問〜ベクトルの空間図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 空間の2点OとAは|\overrightarrow{ OA }|=2を満たすとし、点Aを通り\overrightarrow{ OA }に直交する平面をHとする。\\
平面H上の三角形ABCは、正の実数aに対し\\
|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2\\
を満たすとする。ただし、\overrightarrow{ u }・\overrightarrow{ v }はベクトル\overrightarrow{ u }と\overrightarrow{ v }の内積を表す。\\
(1)\overrightarrow{ OA }・\overrightarrow{ OB }の値を求めよ。\\
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を\\
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。\\
(2)ベクトル\overrightarrow{ OP }を、実数\alpha,\beta,\gammaを用いて\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }と表すとき、\\
\alpha,\beta,\gammaの値をそれぞれ求めよ。\\
(3)空間の点Qは2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }を満たすとする。直線PQが、\\
点Oを中心とする半径2の球Sに接しているとき、|\overrightarrow{ AP }|の値およびaの値を求めよ。\\
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、\\
\triangle APRの面積を求めよ。
\end{eqnarray}

2021慶應義塾大学経済学部過去問
この動画を見る 

【空間ベクトルの根本】空間ベクトルで混乱する前に確認したいこと〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
空間ベクトルについて解説します。
この動画を見る 

【数C】空間ベクトル:東京理科大 座標空間の図形問題

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCは,OA=4,OB=5,OC=3,∠AOB=90°,∠AOC=∠BOC=60°を満たしている。
(1)点Cから△OABに下した垂線と△OABとの交点をHとする。ベクトルCHをOA,OB,OCを用いて表そう。
(2)四面体OABCの体積を求めよう。
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(1)〜空間図形の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} (1)右図(※動画参照)のような正六面体ABCD-EFGHにおいて、辺FGの中点をMとする。\\
このとき、三角形CHMの重心をXとすると、\\
\\
\overrightarrow{ AX }=\boxed{\ \ ア\ \ }\ \overrightarrow{ AB }+\boxed{\ \ イ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ ウ\ \ }\ \overrightarrow{ AE }\\
\\
と表せ、直線AGと三角形CHMの交点をYとすると\\
\\
\overrightarrow{ AY }=\boxed{\ \ エ\ \ }\ \overrightarrow{ AB }+\boxed{\ \ オ\ \ }\ \overrightarrow{ AD }+\boxed{\ \ カ\ \ }\ \overrightarrow{ AE }\\
\\
と表せる。\\
\\
\\
解答群:⓪\ 1 \ \ \ \ ①\ \frac{1}{2} \ \ \ \ ②\ \frac{1}{3} \ \ \ \ ③\ \frac{2}{3} \ \ \ \ ④\ \frac{1}{4} \ \ \ \ \\
⑤\ \frac{3}{4} \ \ \ \ ⑥\ \frac{1}{5} \ \ \ \ ⑦\ \frac{4}{5} \ \ \ \ ⑧\ \frac{1}{6} \ \ \ \ ⑨\ \frac{5}{6}\\

\end{eqnarray}

2022明治大学全統過去問
この動画を見る 
PAGE TOP