18兵庫県教員採用試験(数学:1-1 確率) - 質問解決D.B.(データベース)

18兵庫県教員採用試験(数学:1-1 確率)

問題文全文(内容文):
1⃣-(1)
赤5コ、白7コが入った袋がある。
(1)同時に2コとるとき、玉の色が異なる確率を求めよ。
(2)1コとって、袋にもどさず2コ目をとる。
2コ目が白のとき、1コ目も白の確率を求めよ。
単元: #数Ⅰ#数A#場合の数と確率#確率
指導講師: ますただ
問題文全文(内容文):
1⃣-(1)
赤5コ、白7コが入った袋がある。
(1)同時に2コとるとき、玉の色が異なる確率を求めよ。
(2)1コとって、袋にもどさず2コ目をとる。
2コ目が白のとき、1コ目も白の確率を求めよ。
投稿日:2020.06.30

<関連動画>

福田の数学〜慶應義塾大学2023年看護医療学部第3問〜三角比と図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 半径Rの円に内接する四角形ABCDにおいて
AB=1+$\sqrt3$, BC=CD=2, $\angle$ABC=60°
であるとき、$\angle$ADCの大きさは$\angle$ADC=$\boxed{\ \ ソ\ \ }$であり、AC,AD,Rの長さはそれぞれAC=$\boxed{\ \ タ\ \ }$, AD=$\boxed{\ \ チ\ \ }$, R=$\boxed{\ \ ツ\ \ }$である。
また、四角形ABCDの面積は$\boxed{\ \ テ\ \ }$である。さらに、θ=$\angle$DABとするとき、$\sin\theta$=$\boxed{\ \ ト\ \ }$であり、BDの長さはBD=$\boxed{\ \ ナ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

東大 三角比 放物線 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と計量#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲

出典:2002年東京大学 過去問
この動画を見る 

あれのオンパレード!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{\dfrac{99^4+101^4+200^4}{2}}$
これを解け.
この動画を見る 

気付けば一瞬!!半円と円 解説した後に気付いてしまった。。。

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABC=?
*図は動画内参照
この動画を見る 

2023早稲田(社)三乗根の計算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とする.
(1)$a^3$をaの一次式で表せ.
(2)aは整数であることを示せ.
(3)$b=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とするとき,bを越えない最大の整数を求めよ.

2023早稲田大(社)過去問
この動画を見る 
PAGE TOP