大学入試問題#462「~らん~さんからの紹介」 横国・信州大学 類題 #定積分 - 質問解決D.B.(データベース)

大学入試問題#462「~らん~さんからの紹介」 横国・信州大学 類題 #定積分

問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{e^x+e^{-x}}{e^{(\sin^5x+1)}+e} dx$
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{e^x+e^{-x}}{e^{(\sin^5x+1)}+e} dx$
投稿日:2023.02.25

<関連動画>

【高校数学】毎日積分49日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_{\frac{π}{3}}^{\frac{π}{2}}\frac{sin\frac{x}{2}}{1+sin\frac{x}{2}}dx$
これを解け.
この動画を見る 

【高校数学】東北大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分100日目~47都道府県制覇への道~【㊸宮城】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【東北大学 2024】
$xyz$空間内の$xy$平面上にある円$C:x^2+y^2=1$および円板$D:x²+y²≦1$を考える。$D$を底面とし点$P(0,0,1)$を頂点とする円錐を$K$とする。$A(0,-1,0),B(0,1,0)$とする。$xyz$空間内の平面$H:z=x$を考える。すなわち、$H$は$xz$平面上の直線$z=x$と線分$AB$をともに含む平面である。$K$の側面と$H$の交わりとしてできる曲線を$E$とする。$\displaystyle -\frac{π}{2}≦θ≦\frac{π}{2}$を満たす実数$θ$に対し、円$C$上の点$Q(cosθ,sinθ,0)$をとり、線分$PQ$と$E$の共有点を$R$とする。
(1) 線分$PR$の長さを$r(θ)$とおく。$r(θ)$を$θ$を用いて表せ。
(2)円錐$K$の側面のうち、曲線$E$の点$A$から点$R$までを結ぶ部分、線分$PA$,および線分$PR$により囲まれた部分の面積を$S(θ)$とおく。$θ$と実数$h$が条件$\displaystyle 0≦θ<θ+h≦\frac{π}{2}$を満たすとき、次の不等式が成り立つことを示せ。
$\displaystyle \frac{h\{{r(θ)}\}^2}{2\sqrt{2}}≦S(θ+h)-S(θ)≦\frac{h\{{r(θ+h)\}}^2}{2\sqrt{2}}$
(3) 円錐$K$の側面のうち、円$C$の$x≧0$の部分と曲線$E$により囲まれた部分の面積を$T$とおく。$T$を求めよ。必要であれば$\displaystyle tan\frac{θ}{2}=u$とおく置換積分を用いてもよい。
この動画を見る 

【高校数学】毎日積分61日目~47都道府県制覇への道~【⑤大分】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$C$を媒介変数$θ$を用いて
$\begin{equation}
\left\{ \,
\begin{aligned}
x=3cosθ \\
y=sin2θ
\end{aligned}
\right.
\end{equation}$
$(0≦θ≦π/2)$
と表す。
(1)曲線$C$上の点で、$y$座標の値が最大となる点の座標$(x,y)$を求めなさい。また、曲線$C$上の点で、$y$座標の値が最小となる点の座標$(x,y)$をすべて求めなさい。
(2)曲線$C$と$x$軸で囲まれた図形の面積$S$を求めなさい。
(3)曲線$C$と$x$軸で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積$V$を求めなさい。
【大分大学 2023】
この動画を見る 

【高校数学】筑波大学の積分の問題をその場で解説しながら解いてみた!毎日積分95日目~47都道府県制覇への道~【㊳茨城】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【筑波大学 2023】
$a,b$を実数とし、$f(x)=x+asinx, g(x)=bcosx$とする。
(1) 定積分$\displaystyle \int_{-π}^{π}f(x)g(x)dx$を求めよ。
(2)不等式
$\displaystyle \int_{-π}^{π}\{f(x)+g(x)\}^2dx≧\int_{-π}^{π}\{f(x)\}^2dx$
が成り立つことを示せ。
(3) 曲線$y=|f(x)+g(x)|$, 2直線$x=-π, x=π,$および$x$軸で囲まれた図形を$x$軸の周りに1回転させてできる回転体の体積を$V$とする。このとき不等式
$\displaystyle V≧\frac{2}{3}π^2(π^2-6)$
が成り立つことを示せ。さらに、等号が成立するときの$a,b$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−7 三角関数と置換積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$t=\tan\displaystyle \frac{x}{2}$とおく。
このとき、次の各問いに答えよ。

(1)
$\displaystyle \frac{dt}{dx}$を$t$を用いて表せ。

(2)
$\cos\ x$を$t$を用いて表せ。

(3)
曲線$y=\displaystyle \frac{1}{\cos\ x}$と2直線$x=0,x=\displaystyle \frac{\pi}{3}$および$x$軸で囲まれた部分の面積$S$を求めよ。
この動画を見る 
PAGE TOP