【キミのやり方であっている!】連立方程式:関西学院高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【キミのやり方であっている!】連立方程式:関西学院高等学校~全国入試問題解法

問題文全文(内容文):
入試問題 関西学院高等学校

連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3(\displaystyle \frac{ 5 }{6}x+\displaystyle \frac{ 14 }{3})-5(\displaystyle \frac{ 1 }{3}y-\displaystyle \frac{ 14 }{5})=33 \\
2(\displaystyle \frac{ 5 }{6}x+\displaystyle \frac{ 14 }{3})-5(\displaystyle \frac{ 1 4}{5}-\displaystyle \frac{ 1 }{3}y)=-3
\end{array}
\right.
\end{eqnarray}$
を解け。
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#関西学院高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 関西学院高等学校

連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3(\displaystyle \frac{ 5 }{6}x+\displaystyle \frac{ 14 }{3})-5(\displaystyle \frac{ 1 }{3}y-\displaystyle \frac{ 14 }{5})=33 \\
2(\displaystyle \frac{ 5 }{6}x+\displaystyle \frac{ 14 }{3})-5(\displaystyle \frac{ 1 4}{5}-\displaystyle \frac{ 1 }{3}y)=-3
\end{array}
\right.
\end{eqnarray}$
を解け。
投稿日:2020.12.05

<関連動画>

連立方程式:豊島岡女子学園高等学校~全国入試問題解法【神授業】

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#方程式#連立方程式#高校入試過去問(数学)#豊島岡女子高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 豊島岡女子学園高等学校

ある中学校の合唱部の2017年の部員数は、女子が$x$ 人、男子が64人でした。2018年の部員数は、2017 年と比べて女子が$y$%減り、男子が$y$%増えました。 2019年の部員数は、2018年と比べて女子が40%増 え、男子が$y$%減りました。

2019年の部員数が、女子が63人、男子が60人のとき
$x$の値を求めなさい。
(ただし、$ y\gt 0$)
この動画を見る 

福田の数学〜東京大学2025文系第4問〜放物線で囲まれた面積の最大値

アイキャッチ画像
単元: #連立方程式#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$a$は実数とする。

座標平面において、次の連立不等式の表す領域の

面積を$S(a)$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
y \leqq -\dfrac{1}{2}x^2+2 \\
y \geqq \vert x^2+a \vert \\\
-1 \leqq x \leqq 1
\end{array}
\right.
\end{eqnarray}$

$a$が$ 2\leqq a \leqq 2$の範囲を動くとき、

$S(a)$の最大値を求めよ。

$2025$年東京大学文系過去問
この動画を見る 

確率の問題は解法が複数存在する30秒~全国入試問題解法 #Shorts #数学 #確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
この箱から玉を1個取り出し,それを箱に戻さずに,もう1個取り出す.
取り出した2個の玉の色が異なる確率を求めない.

山形県高校過去問
この動画を見る 

【自力で解きたい!】連立方程式:渋谷教育学園幕張高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#渋谷教育学園幕張高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{3x-4y}-\dfrac{4}{4x+3y}=8 \\
\dfrac{1}{3x-4y}+\dfrac{2}{4x+3y}=6
\end{array}
\right.
\end{eqnarray}$
を解きなさい.

渋谷教育幕張高校過去問
この動画を見る 

【これが入試問題…!?】確率:大阪教育大学附属高等学校平野校舎~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
Aさんは,98%の確率で予想を当てる天才スカウトマンBからスカウトされました.
そのことが嬉しくなりお母さんに相談しました.
そのときの会話の中の$ (1)~(8)$に当てはまる数を答えなさい.
ただし,$ (8)$は小数第一位までの概算で答えること.

母:そんなうまい話,あるはずないからやめときなさい.

A:最初はそう思ったけど,インターネットで調べてみたら,
Bさんって,98%の確率でメジャーデビューできるか
できないか予想を当てることができる天才スカウトマンなのよ.
 
 その人から声をかけられたのだから,ほぼ確定みたいなものだよ.

母:じゃあ実際に計算してみようか?

この100万人に対して,Bさんが予想した場合を考えてみると,
メジャーデビューできる100人のうちの$ (1)$人はBさんの予想が当たって,
$ (2)$人は外れるというわけね.

100万人のアイドル志望者のうち,メジャーデビューできない人は?

A:$ (3)$人

母:$ (3)$人のうちのBさんの予想が当たるのは$ (4)$人,
外れるのは$ (5) $人ということになるよね.

さあ ここからが問題です.

あなたのようにBさんに「※」と予想される人のうち,
 実際にメジャーデビューできる確率はいくらでしょう?

A:Bさんが「※」と予想する人というのは全部で$ (6)$人で,
そのうち実際にメジャーデビューできる人は$ (7) $人だからその確率は........。

 えーーーっ!$ (8)$%未満なの?

大阪教育大学附属高等学校平野校舎過去問


この動画を見る 
PAGE TOP