三乗−三乗の因数分解の公式知らなくても解けるよ。慶應義塾高校の小問。 - 質問解決D.B.(データベース)

三乗−三乗の因数分解の公式知らなくても解けるよ。慶應義塾高校の小問。

問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a-b=3 \\
b= \frac{6}{a}
\end{array}
\right.
\end{eqnarray}
$
のとき$a^2+b^2=?$ $\quad$ $a^3-b^3=?$

慶應義塾高等学校
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a-b=3 \\
b= \frac{6}{a}
\end{array}
\right.
\end{eqnarray}
$
のとき$a^2+b^2=?$ $\quad$ $a^3-b^3=?$

慶應義塾高等学校
投稿日:2021.12.09

<関連動画>

灘中 中学入試問題に挑戦

アイキャッチ画像
単元: #算数(中学受験)#中3数学#式の計算(展開、因数分解)#灘中学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
灘中学校過去問題
数xに対してxを超えない整数のうち最大のものを[x]で表す。
[3.5]=3 , [4] = 4
$[\frac{1×1}{68}],[\frac{2×2}{68}],[\frac{3×3}{68}],\cdots,[\frac{2010×2010}{68}]$
この2010個の整数の中に、全部で何種類の整数があるか。
この動画を見る 

因数分解 愛光高校  令和4年度 2022 入試問題100題解説93問目!

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^2b^2-a^2+6ab-9b^2$

2022愛光高等学校
この動画を見る 

【高校受験対策/数学】死守75

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平行と合同#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守75

①$-8+5$を計算しなさい。

②$1+3×-(\frac{2}{7})$を計算しなさい。

③$2(a+4b)+3(a-2b)$を計算しなさい。

④$\sqrt{27}-\frac{6}{\sqrt{3}}$を計算しなさい。

⑤$(x+1)^2+(x-4)(x+2)$を計算しなさい。

⑥次の式を因数分解しなさい。
$9x^2-4y^2$

⑦右の図のように、長方形$ABCD$を対角線$AC$を折り目として折り返し、
頂点$B$が移った点を$E$とする。
$\angle ACE=20°$のとき、$\angle x$の大きさを求めなさい。

⑧右の図のように、2点$A(2,6)$、$B(8,2)$がある。
次の文中の(ア)、(イ)にあてはまる数を求めなさい。

直線$y=ax$のグラフが、線分$AB$上の点を通るとき、$a$の値の範囲は、(ア) $ \leqq a\leqq$ (イ)である。
この動画を見る 

【数学】中3-5 素数と素因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
素数・・・①____とその数以外に②____
をもたない数
③____ ・・・・ 整数がいくつかの積の形で
表されたとき、その1つ1つの数。
(例)$30=2 \times 3 \times 5→$③は$2,3,5$
④20以下の素数をすべて書こう!!
1.2.3.4.5.6.7.8.9.10
11.12.13.14.15.16.17.18.19.20
⑤30以上40未満の素数をすべて書こう!!
ほとんどの素数が ⑥____なんだ!!

◎素因数分解しよう!!
⑦$28$
⑧$72$
⑨$180$

⑩54にできるだけ小さい自然数のをかけて、
ある自然数の2乗にしたい。$n$はいくつで、その時、
どんな数の2乗になるかな?

この動画を見る 

数学を数楽にして解く 2通りで解説 専修大学松戸

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{14}(\sqrt{28}+4)(\sqrt{14} - \sqrt 8)$

専修大学松戸高等学校
この動画を見る 
PAGE TOP