【理数個別の過去問解説】2019年度 明治大学 経営学部 数学 第3問解説(1) - 質問解決D.B.(データベース)

【理数個別の過去問解説】2019年度 明治大学 経営学部 数学 第3問解説(1)

問題文全文(内容文):
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
  (1) $2x^2+y^2$の最小値
  (2) $\log_{10}x+2\log_{10}y$ の最大値
  (3) $\dfrac{1}{x}+\dfrac{2}{y}$ の最小値
チャプター:

0:00 オープニング
0:20 (1)の問題分析
1:32 最小値の求め方
3:10 まとめ

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
  (1) $2x^2+y^2$の最小値
  (2) $\log_{10}x+2\log_{10}y$ の最大値
  (3) $\dfrac{1}{x}+\dfrac{2}{y}$ の最小値
備考:【数Ⅰ】明治大学経営学部(2019年)数学第3問 ①
https://youtu.be/iOXnwxxf_ZI

【数Ⅱ】明治大学経営学部入試問題2019年数学第3問②
https://youtu.be/hM41zIUOtdw

【数Ⅱ】明治大学経営学部入試問題2019年数学第3問③
https://youtu.be/sfECgtn4R74
投稿日:2022.03.18

<関連動画>

琉球大 微分・積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#琉球大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
琉球大学過去問題
-2<a<2
$y=x^2+ax+1$に原点から引いた2本の接線の接点をP,Qとする。
(1)2つの接点P,Qの座標を求めよ。
(2)2本の接線と放物線で囲まれた図形の面積
この動画を見る 

早稲田大学 赤n-7個、白7個、5個取り出して赤3白2の確率 Pnを最大にするnを求める Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2014早稲田大学過去問題
袋の中に赤玉n-7個、白玉7個の合計n個の玉が入っている。
ただし,$n \geqq 10$とする。この袋から一度に5個の玉を取り出したとき、
赤玉が3個、白玉が2個取り出される確率を$P_n$とする。$P_n$が最大となるnの値を求めよ。
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(3)〜さいころの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 3個のさいころを1回投げるとき、出た目の最大値が3となる確率は\\
\ \boxed{\ \ エ\ \ }\ であり、また、出た目の積が8となる確率は\ \boxed{\ \ オ\ \ }\ である。
\end{eqnarray}

2021立教大学経済学部過去問
この動画を見る 

3次方程式の解の公式 順天堂大(医)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$ x^3+9x+6=0$
*誘導あり
解には$ \omega^3=1$の$\omega$を用いる$(\omega\neq 1)$

順天堂大(医)過去問
この動画を見る 

福田の数学〜神戸大学2023年理系第3問〜確率の基本性質と数え上げ

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ nを2以上の整数とする。袋の中には1から2nまでの整数が1つずつ書いてある2n枚のカードが入っている。以下の問いに答えよ。
(1)この袋から同時に2枚のカードを取り出したとき、そのカードに書かれている数の和が偶数である確率を求めよ。
(2)この袋から同時に3枚のカードを取り出したとき、そのカードに書かれている数の和が偶数である確率を求めよ。
(3)この袋から同時に2枚のカードを取り出したとき、そのカードに書かれている数の和が2n+1以上である確率を求めよ。

2023神戸大学理系過去問
この動画を見る 
PAGE TOP