数学オリンピック予選問題 - 質問解決D.B.(データベース)

数学オリンピック予選問題

問題文全文(内容文):
$a_i(i=1$~$2n)$は有理数である.
$x^{2n}+a_1 x^{2n-1}+a_2 x^{2n-2}+・・・・+a_{2n-1}x+a_{2n}$
$=0$
の解はすべて$x^2+5x+7=0$の解にもなっている.$a_1$の値を求めよ.

数学オリンピック過去問
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_i(i=1$~$2n)$は有理数である.
$x^{2n}+a_1 x^{2n-1}+a_2 x^{2n-2}+・・・・+a_{2n-1}x+a_{2n}$
$=0$
の解はすべて$x^2+5x+7=0$の解にもなっている.$a_1$の値を求めよ.

数学オリンピック過去問
投稿日:2020.09.27

<関連動画>

福田のおもしろ数学210〜2つ対称式の条件から和を求める

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#式の計算(整式・展開・因数分解)#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数 $x, \, y$ が $(1+x)(1+y)(x+y)=2022, \, x^3+y^3=1933$ を満たすとき、$x+y=?$
この動画を見る 

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[p][g][r]^2=[a][b][c][d][e]$
(3ケタ)$^2$=5ケタ
文字はすべて素数

出典:数学オリンピック 予選問題
この動画を見る 

ギリシア 数学オリンピック 簡単

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3・2^x+4-n^2$
$x,n$は自然数とする.$x$の値を求めよ.
この動画を見る 

約数の総積 数学オリンピック予選

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の約数すべての積が$24^{240}$とんる自然数をすべて求めよ.

数学オリンピック過去問
この動画を見る 

数学オリンピック予選問題 超易問

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#ユークリッド互除法と不定方程式・N進法#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d,e,f,g$は異なる自然数で1~7のいずれか。

$a \times b \times c \times d+e \times f \times g$が素数となるすべてを求めよ

出典:数学オリンピック 予選問題
この動画を見る 
PAGE TOP